以AB为直径的圆O交AC于点D过点D的切线交BC于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:57:02
以AB为直径的圆O交AC于点D过点D的切线交BC于E
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC 10 -

1、三角形ABD为直角三角形,三角形ABC等腰三角形,所以BD=DC所以OD平行AC,得第一证2、角AGC为60度,可证的三角形AGC为等边三角形.很简单的,就是画图大啊

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.

1、连接AD,OD∵AB是直径,∴∠ADB=90°,即AD⊥BC∵AB=AC,那么根据等腰三角形底边中线,高、和顶角平分线三线合一:∠BAD=∠CAD∵OA=OD,∴∠BAD=∠ODA=∠CAD∵DF

如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM

证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,过点D作DE⊥AC,交AC于E.DE是圆O的切线么?为什么

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

在三角形ABC中AB=BC,以AB为直径的圆O交AC于D,过点D向DF垂直于BC交AB延长线于点E,垂足为F,DE是切线

过O做OG⊥AD于G在△ABC中∵OD=AB/2=BC/2∠DOE=∠DFB=90°,即OD‖BC∴OD为△ABC中位线即AD=AC/2=4在等腰三角形AOD中OG为AD的垂直平分线即AG=AD/2=

AB为圆O直径,以OA为直径的圆O1与圆O的弦AC交于点D,DE垂直OC

1.【求证ad=dc】连接do,证rt△ado≌rt△cdo2.【求证de是圆o1的切线】∵ao1=do1∴∠dao1=∠ado1∵ao=co∴∠cao==∠aco∴∠ado1=∠aco∴do1//c

如图,在三角形abc中,以ab为直径的圆o交bc于点p,pd垂直于ac交于d且pd于圆o相切(1)ab=ac(2)bc=

(1)是证明吧连接PODP与圆相切,则OP⊥DP且DP⊥AC则AC平行于OP则∠OPD=∠C(同位角)且圆内OP=OD∴∠OPD=∠ODP则∠ODP=∠C△CAD中,AD=AC(2)过A做AF⊥CD于

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E.以B为切点的切线交OD延长线于F.

证明:在圆O中连接OEAD∵D.E两点都在圆上∴OB=OE∵OF=OF∵AB=AC且AB为圆O的直径∴∠ADB=90°∴D为BC边的中点∵O为AB变得中点∴OD为△ABC的中位线∴OD∥AC∴∠BOD

如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点D,过D做直线DE垂直BC于F,且交BA的延长线于点E.

是AB=BC吧?(1)证明:连接BD、ODAB为直径,∠BDA为直径所对圆周角所以∠BDA=90,BD⊥AC,BD为AC边上的高因为△ABC为等腰三角形,所以BD也为AC上中线,D为AC中点AB为直径

如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC

1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE

△ABC中,以BC为直径的圆交AB于点D,AC为圆O的切线

∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可

如图,三角形ABC中,AB=AC,以AC为直径的圆O交BC于点D,交AB于点E,连接CE,过点D作圆O的切线交AB于点M

(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE

如图,在△ABC中,AB=AC,以AB为直径作圆O交BC于D,交AC于E,过D作DG垂直AC于G,交AB的延长线于点F.

解:连接BE,AD.AB为直径,则∠BEA=∠ADB=90°,BE垂直AC.又AB=AC,则BD=CD.∵DG垂直AC.∴DG∥BE,⊿CGD∽⊿CEB,CG/CE=CD/CB=1/2,则CG=(1/

如图,已知:在△ABC中,AC=BC,以BC为直径的圆O交AB于点D,过点D作DE⊥AC,交AC于点E,交BC的延长线于

如图.①辅助线:连接CD.∵AC=直径BC.∴等腰△ACB.又∵BC是⊙O直径.∴CD⊥AB.∴CD是△ACB的中线(很据等腰三角形三线合一定理).∴BD=AD.②辅助线:连接OD.∵OD,OB是⊙O

三角形ABC是等腰三角形,AB=AC,以AC为直径的圆o与BC交于点D,DE垂直于AB,

1.连接od∵od=oc=r,oc=1/2ac=1/2ab∴od=1/2ab∵ao=co所以od‖ab因为角dea=90°,所以od⊥efDE是圆O的切线,得证解2:过c做ab平行线交ef与gfc:c

等腰三角形ABC,AC=BC=10,AB=12,以BC为直径作圆O交AB于点D,交AC于点G

连接CD、BG,OG=OC=OB,角CGB=90度,GB平行FE,EC:EB=FC:FG,CD垂直平分AB,D是AB中点,F是AG中点,AF=FG,EC:EB=FC:AF,EC*AF=EB*FC.

如图,在△abc中,ab=ac,以ac为直径作圆o交bc于点e,过点d作fe⊥ab于点e,交ac的延长线于点f.

①∵OD∥AB{∠ODC=∠OCD=∠ABC,同位角相等},故OD⊥FE{已知AB⊥FE};∴FE是⊙O的切线.②∵OD/FO=AE/FA=sin∠CFD=3/5 {正弦函数定义},FA=AE·5/3

已知如图在ABC中AB=AC以AB为直径的圆O分别交BC、AC于点D、E.

1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DF垂直于BC,交AB的延长线于E,垂足为F.

(1)证明:如图,∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC;∵AB=BC,∴AD=DC;∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD.∴直线DE是⊙O的切线.作DH⊥AB,垂足