以三角形的bc边上一点o为圆心的圆已知半径=5.ef=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:00:26
(1)∵AC=2∴BC=3连接OD,OE,设圆O的半径为n故ODCE为正方形∴OD=CE=OE=n,∠OEB=90°=∠C∵∠C=∠OEB,∠B=∠B∴△ACB∽△OEB∴AC/OE=BC/EB∴2/
之前应该证明了OD//CE,有AD/DE=AO/OC,也就是AD/DE=AO/OC=2/1=2,因为OC就是所求半径,所以在直角三角形ADO中r^2+(AD)^2=(2r)^2,得出r^2=4/3
答:ab/(a+b)解析:连接OF,可证△BOF∽△BCA,OF:AC=BF:AB,其中OF=半径r,BF=a-r,解得r=ab/(a+b)
连接OE因为EF=AF所以角A=角AEF因为BD是圆O的直径所以角BED=90度因为角BED+角AED=180度所以角AED=90度因为角ACB=90度所以角ACB=角BED=90度所以A,C,D,E
(根据相切的性质与相似三角形求解)∵圆O与AC、BC相切于点D、E∴OD、OE⊥AC、BC∴OD‖BC∴△ADO∽△ACB设:圆O的半径为x∵AD/AC=DO/BC∴有:(4-x)/4=x/2解得:x
请查:①A、B、D不在园上.②C在园上,则BC是折线,又如何与园相切?
证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1
1:DE与⊙O相切理由:因为AB=AC,OB=OD,共用角B,所以三角形ABC与三角形OBD相似,则OD‖AC又因为DE⊥AC,所以DE⊥OD,DE是⊙O的切线.2:连接圆心至AC边上的切点E,则OE
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
o是哪个对角线上的点!应该是对角线AC上的一点吧!由于是正方形对角线AC上的点则O到BC和DC的距离是一样的.这个圆和BC相切,当然也和CD相切了
(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,
(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,
小题1:(1)证明:如图,连接OD,∵OD=OB,∴∠1=∠2.∵CA=CD,∴∠ADC=∠A.在△ABC中,∵∠ACB=90°,∴∠A+∠1=90°.∴∠ADC+∠2=90°. ∴∠CDO
连OE1)三角形BDE为直角三角形(OB、OD、OE相等,角BDE为直角)三角形BDE与三角形ACB相似,DE/AC=BD/AB所以DE=9/5(2)角FED=角OEB=角OBE角FED+角AEF=9
连接OM,因为M为切点,所以OM垂直AC,又因为AB垂直BC,角c=角c,所以三角形ABC相似于三角形OMC,OM=OB=OD=a/2,AB=a,再依据三角形相似定律可以求出D为OC的中点.可得证1再
你爷爷都不知道该怎么回答.
(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪
连接OE,∵AB、AC为切线,∴OD⊥AB,OE⊥AC,又∠A=90°,∴四边形ADOE是矩形,又OD=OE,∴四边形ADOE是正方形.∴半径OD=OE=AD=3,∵∠C=∠BOD,而tan∠BOD=
从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆
连接OE,易证ADOE是正方形,边长是3.扇形DOE是四分之一圆,是半圆O面积的一般,其面积为9π/4,在半圆O中,剩余两部分扇形的面积之和也为9π/4.△BDO相似于△OEC,BD:DO=OE:EC