作直线平分任意四边形面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:53:26
(1)因为OE∥AC,所以S△AOE=S△COE,所以S△AOF=S△CEF,又因为,折线AOC能平分四边形ABCD的面积,所以直线AE平分四边形ABCD的面积,即AE是“好线”.(2)连接EF,过A
p为直线x+y+3=0上任意一点即y=-x-3设P(x,-x-3)S△AOP=|OA|*|AP|/2=|AP|/2S四边形PAOB=2*S△AOP=|AP|=√(OP²-OA²)=
作法: 如图 1、连接AC 2、过D作直线DE,使DE//AC,交BC的延长线于E 3、取BE的中点M,作直线AM 则直线AM就是过顶点A且将四边形A
这正是重心的性质,更主要是一个物理术语.定义:一个物体的各部分都要受到重力的作用.从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.物体的重心位置质量均匀分布的物体(均匀物
体积和表面积三角形的面积=底×高÷2.公式S=a×h÷2正方形的面积=边长×边长公式S=a2长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公
连接AC,BD,取AC连线的中点O,折线BOD将四边形分成面积相等的两部分.过中点O做对角线BD的平行线交AD于E点,连接BE,BE即为所求.通常BE也叫母线.
找到平行四边形的对称中心M,与圆心O连线MO即为所求.
任意四边形ABCD,取AC中点O,过O做BD平行线,交BC,DC于E,F,连接BFBF就是所求直线证明:S△ADO=S△DOC,S△ABO=S△BOCS△ADO+S△ABO=S△DOC+S△BOC=1
延长BA与CD延长线交与F,则四边形面积为两个等腰直角三角形之差.等腰直角三角形CBF面积为5x5/2=12.5等腰直角三角形DAF面积为3x3/2=4.5所以四边形ABCD面积为8
连该点到四个顶点,然后可以算出以上下底为底边的三角形的面积,再求出其比例,这个比例值就是过该点的直线的斜率.(梯形的底为x轴)
用一根绳子把四边形从顶点处吊起,绳子所在的直线就是四边形重心所在的直线,也是将四边形面积平分的直线
分为两种情况,如果可以做一条经过某边长并经过对应的顶点的直线,则显然可以对分面积,如果不能做到的话,则可以做一条平行于一边的平行线,只需要控制好上下的高度,应该是可以做到的,一边是梯形,一边三角形,这
连结对角线,取其中点与另外两角连结,即把四边形二等分.
请问楼主要求什么样的四边形了.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2
求出它的重心,把重心和该顶点相连即可.
设夹角为a四边形被对角线分为4个三角形,对角线四段分别设为m,n,p,q则4个三角形面积分别为:S1=1/2*m*p*sinaS2=1/2*m*q*sin(180-a)=1/2*m*q*sinaS3=
设夹角为a四边形被对角线分为4个三角形,对角线四段分别设为m,n,p,q则4个三角形面积分别为:S1=1/2*m*p*sinaS2=1/2*m*q*sin(180-a)=1/2*m*q*sinaS3=
1)可以用等底等高证明三角形ACE的面积与三角形AOC面积相等,折线AOC能把四边形ABCD的面积平分,所以AE是"好线"2)这题思路差不多与下一题相似,也是平行线吧3) 
分析:(1)设AE与OC的交点是F.要说明直线AE是“好线”,根据已知条件中的折线AOC能平分四边形ABCD的面积,只需说明三角形AOF的面积等于三角形CEF的面积.则根据两条平行线间的距离相等,结合