你知三角形abc是等腰直角三角形角ed193过年的在咱这

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:48:44
你知三角形abc是等腰直角三角形角ed193过年的在咱这
怎么证明三角形ABC是等腰直角三角形

用四点共圆就很好证!用其他方法难度很大!∵∠ABC=∠ADC∴A、B、D、C四点共圆∴∠ACB=∠ADB=45°∵∠ABC=45°∴∠ABC=∠ACB=45°∴AB=AC,∠BAC=90°∴△ABC是

如图在RT三角形ABC中,CD是直角C的角平分线,E为AB的中点,PE垂直AB交CD延长线于P求证三角形ABC为直角三角

∵PE垂直平分AB,∴PA=PB过P分别做PF⊥CB于F,PG⊥AC于G.四边形GPFC为正方形.∠GPF=90°△APG≌△BPF∠APG=∠BPF所以∠APB=90°所以△ABP为等腰直角三角形

求下图阴影部分的面积(三角形ABC是等腰执教三角形)CM

(1)阴影部分的面积等于半圆与扇形面积的和,减去一个三角形的面积,即:102×3.14×45360+(10÷2)2×3.14×12-10×10×12=28.5平方厘米(2)先求扇形半径的平方,然后设法

已知三角形ABC为等腰直角三角,BD=DC,角DBC=15°求证AB=AD.

BD=DC,设BC=1,AB=1,角BDC=150,余弦定理可得BD=2-√3,角ABD=75,余弦定理,AD*2=AB*2+BD*2-2AB*BDcos75,得AD=1,再问:我才初一,这些是神马啊

已知△ABC中,∠B=90°,AB=BC,D在AB上,E在BC上,BD=CE,M是AC的中点,求证△DEM是等腰直角三角

连结BM,则BM=MC,∠DBM=∠C=45º又BD=CE===>△BDM≌△CEM===>MD=ME∴△DEM是等腰直角三角形

三角形ACD是等边三角形,△ABC是等腰直角三角形

∵∠ACB=90°,AB=2,.∴BC=AC=√2;∵三角形ACD为等边三角形,∴AC=AD=CD=√2.作DF垂直BC的延长线于F.∠BCD=∠BCA+∠ACD=150°,则∠DCF=30°DF=C

初2勾股定理题三角形三个内角度数比为1:2:3,它的最大边为M,那么它的最小边是_____.斜边上的高为M的等腰直角三角

1,因为三角形三个内角度数比为1:2:3,所以三个角分别为30度60度90度.这是一个直角三角形.最长边为M也就是90度所对的边为M,(就是斜边为M),最短边则为30度角所对边.用三角函数,sin30

如图三角形ADC是等边三角形,角ACB=90三角形ABC是等腰直角三角形

因为三角形ABC是等腰三角形,且角ACB为90度,所以边AC=BC,所以三角形ABC为等腰直角三角形没有看到图只能这样回答再问:嗯嗯

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

求助一道三角函数题,在三角形ABC中,cos²二分之A=2c分之(b+c),则三角形的形状为?(答案是直角三角

方法一:cos²(A/2)=(1+cosA)/2,根据余弦定理有cosA=(b²+c²-a²)/2bc,代人cos²(A/2)=(b+c)/2c,得(

已知△ABC的三条边长满足a=b+2,ab=48,c=10,△ABC是直角三角三角形吗?请证明你的猜想

a=b+2,ab=48解方程得a=8,b=6c=10因a^2+b^2=c^2所以是直角三角形

abc是等腰直角三角形

连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13

已知三角形ABC的三个顶点分别为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),求证△ABC是直角三角

根据空间两点的距离公式,AB的距离等于(x1-x2)^2+(y1-y2)^2+(z1-z2)^2的开方.得出AB=3,BC=3√2,AC=3,由此AB^2+AC^2=BC^2.根据勾股定理,△ABC是

初二数学3道判断题1.在三角形ABC中,a^2+b^2=c^2,则三角形ABC不是直角三角形2.若三角形ABC是直角三角

1.在三角形ABC中,a^2+b^2=c^2,则三角形ABC不是直角三角形(错)2.若三角形ABC是直角三角形,角C=90°,则a^2+b^2=c^2(对)3.在三角形ABC中,若a^2+b^2=c^

在△ABC中∩ACB=90°,D、E是AB上的两点,且AE=AC,BD=BC,EF⊥CD于F,求证△CEF是等腰直角三角

证明:用角的计算来证明首先设角A,那么角B=90-A利用条件,得到角CDA=90-A/2角FED=A/2,角CEB=45+A/2从中可得角CEF=45度且EF垂直CD所以三角形CEF是等腰直角三角形.

费马点的历史背景费马点被发现的历史背景.背景!在特殊三角形中寻找并验证费马点,例如,当三角形ABC是等边,等腰或直角三角

浅谈三角形的费马点法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此

如图,在三角形ABC中,CD是中线,AC²+BC²=4CD²,求证:三角形ABC是直角三角

延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC∵AC^2+BC^2=4CD^2∴AC²+AE²=(2DC)²∴三角形AEC为

已知三角形三个定点ABC坐标 证明三角形ABD是等腰直角三角形

两点坐标距离公式求的AB=根号下{[(3-(-1)]2+(1-2)2}=根号17BC=根号下{(3-2)2+[(1-(-3)]2}=根号17AC=根号下{[2-(-1)]2+(-3-2)2}=根号34