其中Σ为z=2-x^2-y^2内位于z>=的部分的上侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:40:42
其中Σ为z=2-x^2-y^2内位于z>=的部分的上侧
x,y,z为实数 且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y

(y-z)^2+(z-x)^2+(x-y)^2=(x+y-2z)^2+(y+z-2x)^2+(z+x-2y)^2[(y-z)^2-(y+z-2x)^2]+[(z-x)^2-(x+z-2y)^2]+[(

已知x,y,z为实数,满足x+2y-z=6x-y+2z=3

x+2y-z=6①x-y+2z=3②,①×2+②,得x+y=5,则y=5-x③,①+2×②,得x+z=4,则z=4-x④,把③④代入x2+y2+z2得,x2+(5-x)2+(4-x)2=3x2-18x

设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.

因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住

已知3x+2y-3z=0 8x-4y-z=0 其中z不等于0,则x:y:z=0,则x:y:z的值为()

联立两个三元一次方程,得x=z/2y=3*z/4z=z故x:y:z=2:3:4

f(x,y,z)=x^3y^2z^2,其中z为方程x^3+y^3+z^3-3xyz=0所确定的隐函数试求fx(-1,0,

首先令(x,y,z)=x^3+y^3+z^3-3xyzgx=3x^2-3yzgz=3z^2-3xyzx=-(gx/gz)=-(3x^2-3yz)/(3z^2-3xy)=-(x^2-yz)/(z^2-x

x,y,z为实数且(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-

设a=x-y,b=y-z,-a-b=z-x(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-2z)平方b^2+a^2+(-a-b)^2=(-a-b-

多元复合函数求导题目z=y/f(x^2-y^2),其中f(u)为可导函数,验证(1/x)*(ðz/ðx)

z=y/f(x^2-y^2)ðz/ðx=y(-2xf'/f^2)ðz/ðy=1/f+y(2yf'/f^2)(1/x)*(ðz/ðx)=-2yf'/f^2

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

若4x=7y+5z,2x+y=z,则x:y:z的值为

把z=2x+y代入4x=7y+5Z得4x=7y+10x+5yx=-2y,z=-3yx:y:z=-2:1:-3

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.

平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

设u=xz,其中Z=Z(x,y)是由方程x平方z+2y平方z平方+y=0确定,求du/dx

首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3

设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(

x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+

计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)

Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-