函数fx=x^3 ax^2-a^2x 1 gx=ax^2-2x 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:05:17
函数fx=x^3 ax^2-a^2x 1 gx=ax^2-2x 1
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

已知函数fx=x^3-ax^2+3x,若fx在x∈【1,正无穷)上是增函数,求实数a的取值范围

f'(x)=3x²-2ax+3=0在[1,+∞)上是增函数,有两种可能:(1)3x²-2ax+3恒≥0∆=4(a²-9)≤0,-3≤a≤3(2)3x²

已知函数fx=loga(x^2-ax+5)(a>0且a 不等于1)

1.22.a大于0小于1或a大于1小于2根号5对不对?再问:求详细过程--再答:1x^2-2x+5最小的4所以f(x)的最小值为22.分两种情况a大于0小于1和a大于1要使若对任意x属于(0,正无穷)

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

已知函数fx=1/3x^3+(a-2)x^2/2-2ax-3

f(x)=1/3x³+(a-2)/2x²-2ax-3第一问:a=1f(x)=1/3x³+(1-2)/2x²-2x-3=1/3x³-1/2x²

已知函数fx=-x∧3+ax∧2+b (1)若a=0b=2 求Fx=(2x+1)fx的导数

这是复合函数求导么首先把ab分别带入fx得到fx=-x³+2接着对(2x+1)求导得到2,对fx求导得到-3x²,再利用复合函数求导法则得到答案-8x³-3x²

已知函数fx=2ax立方-3x平方,a>0

f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.

已知函数fx=(2ax-1)/(2x+1),当a=1时,求fx的单调区间

将a=1带入函数中,变形为fx=(2x-1)/(2x+1)其中x不等于-1/2,否则无实意f’x=[(2x-1)'(2x+1)-(2x+1)'(2x-1)]/(2x+1)^2f’x=[2(2x+1)-

已知函数fx=3ax^4-2(3a+1)x^2+4x,①当a=1/6时,求fx的极值;②若fx在(-1,1)上是增函数,

因为等式两边同除以一个式子,则必须保证这个式子不能等于0而x-1是有可能等于0的,所以不能随便的约去(x-1)(x²+x+1)-3(x-1)=0提取公因式x-1得到(x-1)(x²

已知函数fx=3ax^4-2(3a+1)x^2+4x,①当a=1/6时,求fx的极值

求导数:f'(x)=2x^3-6x+4=0,可知x=1,2,求2阶导数:f''(x)=6x-6,x=1,所以只有x=2是函数的极值点,带入原函数:f(2)=4是函数的极大值点

设a∈R,函数fx=ax³-3x²,若函数gx=fx+fx的导数.x∈[0 2]在x=0处取得最大值

请稍等再答:首先f'(x)=3ax²-3,所以g(x)=ax^3+3ax²-3x-3,则g'(x)=3ax²+6ax-3由已知,g(x)在[0,2]上递减,所以在[0,2

已知函数fx=x^3-x^2+ax+b

再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==

设函数fx=x^3+ax^2-a^2x+m其中实数a>0.

这是求什么啊,怎么连个问题也没有

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x^3+ax^2-a^2x+m若a=1时函数fx有三个不同的零点

(1)对f(x)求导得:f(x)'=3x^2+2ax-a^2解得两个极值点分别为:x1=-a,x2=a/3当a=0时:x1=x2=0,故此时f(x)在R上都不存在极值点,满足条件.当a≠0时:考虑到x

设函数fx=x^3+ax^2-a^2x+1,gx=ax^2-2x+1,其中实数a>0.

解题的思路:f(x),g(x)的增区间的交集包含(a,a+2);求导,获得增区间;f'(x)=3x²+2ax-a²,增区间为(-∞,a/3],[a,+∞);