函数z=根号下2-x2-y2的定义域为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:40:12
函数z=根号下2-x2-y2的定义域为
求旋转抛物面z=x2+y2被平面z=1所截下的有限部分的面积

z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π

求函数 f(x,y)=根号下(4-x2-y2)在圆域 x2+y2小于等于1 的最大值.所有2都是平方的意思.

额,就是2啊..因为你要f(x,y)最大,那么x^2+y^2就要最小,最小在圆域里是0咯,所以最大为2...再问:有详细步骤吗?实在不太明白再答:这么说吧,你可以另Z=x^2+y^2...这样就清楚了

若X2-4Y+Y2+6Y+根号(Z-3)+13=0,求(XY)2的值

你问错了吧?不是X2-4Y+Y2+6Y+根号(Z-3)+13=0,而是X2-4X+Y2+6Y+根号(Z-3)+13=0吧?那样的话就可以解了:原式就可合并为:(X-2)2+(Y-3)2+根号(Z-3)

x,y属于R+,且x2+1/4y2=1,则x根号下1+y2的最大值为

由x²+(1/4)y²=1可知4x²+y²=4于是根据均值不等式2ab≤a²+b²,有x√(1+y²)=2·(2x)·√(1+y&

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.

由于曲面z=2-x2-y2及z=x2+y2所的交线是x2+y2=1,因此Ω在xOy面上的投影区域为D:x2+y2≤1∴Ω的体积为 V=∭Ωdv=∫2π0dθ∫10ρdρ∫2−ρ2ρ2dz=∫

利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所

球坐标变换,然后得到:原积分=∫(0到2∏)dΘ∫(0到П)sinφdφ∫(0到1)r^4dr=2П*2*(1/5)=4П/5.

重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积

极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=

函数y=x2+2/2倍根号下x2+1的最小值为

y=(x^2+2)/√(x^2+1)=√(x^2+1)+1/√(x^2+1)√(x^2+1)>0y=√(x^2+1)+1/√(x^2+1)>=2√(x^2+1)*[1/√(x^2+1)]x=0y最小值

(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,

函数y=根号下x2+2+1的值域

写错了吧,应该还有一个x的.0到无穷大.再问:给个过程行不?再答:x2+2x+1=(x+1)²,当x=-1时,它是有最小值为0,其他时候都是>0的,故根号x2+2x+1的值域是0到正无穷大。

求函数f(x,y)=(x2+y2)2-2(x2-y2)的极值

x=0或x=整负根号下1-y方

求函数Z=X2-XY+Y2-2X+Y的极值、、、步骤

换元.可设x=a+b,y=a-b.则z=2(a²+b²)-(a²-b²)-2(a+b)+(a-b)=a²-a+3b²-3b=[a-(1/2)

已知3x2+2y2-6x=0 求z=x2+y2的最大值

3x2+2y2-6x=0x2+y2=1/2(6x-x2)=9/2-1/2(x2-6x+9)=9/2-2-1/2(x-3)2当x=3时,Z最大=4.5

求过圆x2+y2=10上一点M(2,根号下6)的圆的切线方程.

M到圆心的直线斜率是2分之根号6倍,与其切线垂直切线斜率是-3分之根号6,且过M点得到切线方程是y=-3分之根号6倍的x+3分之5倍的根号6再问:麻烦能再详细一点吗?再答:M到圆心的直线y=(2分之根

求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,

为方便,记p=√(x^2+y^2+z^2)对x求导:yz+xyz'x+(x+zz'x)/p=0,得:z'x=-(yz+x/p)/(xy+z/p)同样,对y求导,得:z'y=-(xz+y/p)/(xy+