分子无穷小分母无穷大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:36:57
1、这个例子最不好说,你最好去百度下.我举一个.11/21/4.211/2.421......每个极限都是0,但乘再一起是无穷大,注意连乘取的极限和整体取的极限是不可交换的,如果可交换,则无穷个无穷小
wbjoke123你能不能说得清楚点.为什么要是变量.接近零的变量的倒数为无穷大就是无穷小贝数轴上无限接近0但是就不可能接近0的一个范围
无穷小+无穷大仍是无穷大无穷小乘以无穷大没有意义(如果有式子会出现无穷小乘以无穷大的形式,不能直接求极限,必须要先化成有意义的形式比如1/x*x(x→∞),要先化成有意义的形式,1/x*x=1.之后才
举个例子吧,当x=+∞时可不可以认为1/x是无穷小?如果可以x*(1/x)=1;但是当x=+∞时,(x*x)亦是无穷大,那么(x*x)*(1/x)=x=无穷大;同样的1/(x*x)可以看作无穷小,那么
...这个怎么能一概而论呢,简单点洛必达法则~,等价无穷小用泰勒~这个不是随随便便就能总结地,太宽了
应该说是等价无穷小量,就是当x趋于某一极限时,f(x)/g(x)趋于1时,f(x)和g(x)就是当x趋于这一极限时的无穷小量,在进行某些极限运算时,可以互相替换.并不一定是阶数相消,例如x与sinx就
无穷大无穷小和0再问:这个可靠不有没有可以推理退出来呢?再答:在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(
这是无穷小,x^2→0是无穷小|3-sin(1/x)|≤4是有界函数.所以,f(x)是无穷小
可以用的lim[x→+∞][ln(1+1/x)]/arccotx=lim[x→+∞]x^(-1)/arccotx洛必达=lim[x→+∞]-x^(-2)/[-1/(1+x²)]=lim[x→
可以,只要你的两个分别求极限都是存在的就可以因为limA/B=limA/limB假如limA,limB都存在然后limC+A=limC+limAC为常数时显然就等于C+limA只是需要注意你的分开洛必
能不能认为类似于(+99999999999999999999999...)*(-999999999999999999999999...)=(-89999999999999999999999999999
可以单独再答:�������ʿ��ʣ���������ɣ�лл��再问:ʲô�����再答:ʲô���������再答:ֻҪ�ǻ����ʽ再答:�Ӽ�һ�㲻���õȼ�����С再问:����ĸ��
极限不存在,对于X->0的右极限|X|=X,故极限为1对于X->0的左极限|X|=-X,故极限为-1左极限不等于右极限,所以极限不存在
1.“无穷小乘以无穷大”这个是一个不定型,可能等于一个常数,可能等于无穷大,可能等于无穷小,不能判定,比如(1/x)*x=1(x趋向于无穷大),(1/x²)*x=无穷小(x趋向于无穷小),(
分子的极限是无穷大,分母极限是0,则函数的极限是多少函数极限不存在,或曰发散,也俗称为无穷大.随着分子越来越大,分母越来越小,商自然越来越大,以至于你任取一个很大的数,我们都可以让商比他大,这就是无穷
首先说一下无穷小是无穷小量的简称,无穷小量是一个量,而不是一个数,你可以把它当成一个变量(就像x一样),无穷小就是无限接近0的一个数,倒数式吧(无穷小分之一)就相当于1/0可以说趋向于无穷大