判断向量β能否由向量组a1,a2,a3线性表出,若能
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:51:56
证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在
向量组B线性无关(b1,b2,...,br)X=0只有零解(a1,a2,...,as)KX=0只有零解--因为向量组A线性无关--所以KX=0只有零解r(K)=r(K的列数).再问:貌似简略了点儿,能
(b1,b2,b3)=(a1,a2,a3)KK=111-1111-11求出K的逆即得.(a1,a2,a3)=(b1,b2,b3)K^-1由于K^-1=1/2-1/201/20-1/201/21/2所以
/>线性相关.2.A的逆的特征向量也是A的特征向量,设β是A的属于特征值a的特征向量则Aβ=aβ,得k+3=a2k+2=akk+3=a得k=1或k=-2.3.由已知,|A|=0,得t=-2.再问:13
题目中K应该是nXr矩阵.首先,r(b1,b2,...,br)=r[(a1,a2,...,an)K]再问:r(AB)
对的.若向量组a1,a2,...,ar线性相关,则存在不全为零的k1,k2,……,kr,使得k1a1+k2a2+……+krar=0显然也有,k1a1+k2a2+……+krar+0ar+1+……+0am
(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2
由题意,设ai=c1i×b1+c2i×b2+...+cti×bt,i=1,2,...,s.记矩阵A=(a1,a2,...,as),B=(b1,b2,...,bt),C是s×t矩阵(cij),则A=BC
证明:充分性:若任一n维向量a都可以n维向量组a1,a2,…,an线性表示,那么,特别地,n维单位坐标向量组也都可以由它们线性表示,又向量组a1,a2,…,an也可由n维单位坐标向量线性表示,所以,向
证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b
线性无关.反证法.假设mb1+nb2+rb3=0,则ma1+n(a1+a2)+r(a1+a2+a3)=0;则(m+n+r)a1+(n+r)a2+(r)a3=0,与向量组a1,a2,a3线性无关矛盾.故
ifT={a1,a2,a3,a4,a5,a6,a7,a8}是6维向量组thenT的秩R(T)=6assmueT中有一个一下的向量可由其余向量线性表出thenR(T)》=7sotheassmuption
1.错2.错3.D4.CD5.x-y6.0
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,
因为a2,.,am线性无关所以a2,.,am-1线性无关而a1,a2,.,am-1线性相关所以a1可由a2,.,am-1线性表示再问:额,问的是求am能由a2,…,am-1线性表示,求老师解答再答:a
设向量b=k1a1+k2a2+k3a3+k4a4,若存在k1,k2,k3,k4使等式成立表示向量b能由向量组ai表示设A=1-11102212421132A的增广矩阵为BB=1-112|21022|0
R(A)=R(A,B)..
选D.向量组1:a1,a2...ar可由向量组2:β1,β2...βs线性表示,可知向量组1的秩小于或等于向量组2的秩,从而有向量组1的秩必小于或等于s.若加上条件r>s,则可知向量组1线性相关.
需要证明两点,一是向量组A0线性无关,二是向量组A中每一个向量都可以由向量组A0线性表示.第二点已经满足,只证明第一点(可以用反证法,假设A0线性相关,则A中每一个向量可以由向量组A0线性表示,且至少