利用配方法证明:无论x取何实数值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:13:14
6x-3x^2-7原式=6x-3x^2+3-3-7=-3(x^2-2x+1)+3-7=-3(x-1)^2-4∵(x-1)^2≥0∴-3(x-1)^2≤0∴-3(x-1)^2-4<0∴6x-3x^2-7
y=t^2-3t+3=(t^2-3t+9/4)+3/4=(t-3/2)^2+3/4因为(t-3/2)^2>=0的所以y>=3/4所以无论t取何实数代数式t^2-3t+3的值恒为正如有不明白,
原式=2x²-8x+8+10=2(x-2)²+10≥10所以值不小于10
2x^2-4x+15=2*(x^2-2x+1)+13=2*(x-1)^2+13≥2*0+13>0代数式2x^2-4x+15的值恒大于零
2x²-8x+18=2(x²-4x+4)+10=2(x-2)²+10∵(x-2)²≥0∴2(x-2)²+10≥10∴2x²-8x+18≥10
2x²-8x+18=2(x²-4x+9)=2(x²-4x+4+5)=2(x-2)²+10因为不论x取何实数,2(x-2)²都大于等于0,所以2(x-2
x的平方-4x+4.5=x²-4x+4+0.5=(x-2)²+0.5∵(x-2)²>=0∴(x-2)²+0.5>=0.5>0∴x的平方-4x+4.5的值恒大于零
2(x^2-4x+2)+102(x-2)^2+10x=2时,取最小值10所以无论x取何值,都大于等于10是否可以解决您的问题?
原式=-2(x^2-4x+9)=-2(x^2-4x+4+5)=-2(x-2)^2-10
M=2x²-8x+18=2(x²-4x+4)+10=2(x-2)²+10因(x-2)²≥0,则:M≥10,完工.再问:第一步怎么变成第二步的?再答:M=2x&s
6x-3x²-7=-3x²+6x-7=-3(x²-2x)-7=-3[(x²-2x+1)-1]-7=-3(x-1)²+3-7=-3(x-1)²
x^2-6x+10=x^2-6x+9+1=(x-3)^2+1(1)x^2-6x+10=(x-3)^2+1恒大于零(2)(x-3)^2+1要取最小值,x-3=0.于是x=3时x^2-6x+10=1最小
2X-X²-3=-(X-1)²-2∵-(X-1)²≦0∴-(X-1)²-2≦-2
-2x²+8x-11=-2(x^2-4x+4)-3=-2(x-2)^2-3所以无论x取何值,上式总小于0
证明:x的平方-8x+18=x^2-8x+16+2=(x-4)^2+2∵(x-4)^2>=0∴(x-4)^2+2>=2即代数式x的平方-8x+18的值不小于2
m²+n²+2m-4n+8=(m+1)²+(n-2)²+3大于等于3无论m,n取何实数时,代数式m²+n²+2m-4n+8的值总不小于3
-2x^2+4x-7=-2(x-1)²-5≤-5所以,-2x^2+4x-7的值总是负数
4x^2+8x+5=4(X^2+2X)+5=4(X^2+2X+1-1)+5=4(X+1)^2-4+5=4(X+1)^2+1≥1>0
-x²-2x-2=-x²-2x-1-1=-(x-1)²-1∵-(x-1)²
x的平方-6x+12=(x-3)的平方+3(x-3)的平方是非负数(x-3)的平方+3是正数无论x取何值,代数式的值都是正数.