向量ab均为非零向量,且ab=0,(a-c)(b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:29:52
向量ab均为非零向量,且ab=0,(a-c)(b
向量a,向量b为非零向量,且|向量a|=|向量b|=|向量a-向量b|,求向量b与向量a+向量b的夹角a

答案很简单是30度.根据给出的条件可以知道,向量a、向量b和向量a-b构成等边三角形,向量a+b方向恰好是此等边三角形的角平分线,那么显然夹角就是30度

已知ab向量是非零向量,且|a向量|=|b向量|=|a向量-b向量| 则a与a+b的夹角

得a²-2ab+b²=a²有b²=2ab得cos=1/2得=60°又a,b可构成菱形即=/2=30°

已知非零向量AB与AC满足(向量AB/丨向量AB丨+向量AC/丨向量AC丨)•BC=0,且

等边三角形向量AB/丨向量AB丨就是AB方向上的单位向量因为(向量AB/丨向量AB丨+向量AC/丨向量AC丨)•BC=0所以ABC的三线合一,ABC为等腰三角形因为向量AB/丨向量AB丨&

已知非零向量AB与AC满足(向量AB/丨向量AB丨+向量AC/丨向量AC丨)?BC=0,且

(1)向量AB/丨向量AB丨和向量AC/丨向量AC丨,分别表示向量AB和向量AC的单位方向向量两者之和与向量BC相成为0说明△ABC为等要三角形(2)又两单位方向向量之积为1/2说明COS<BA

1、已知非零向量AB与AC满足[(向量AB/|向量AB|)+ (向量AC/|向量AC|)·向量BC=0,且(向量AB/|

1、已知非零向量AB与AC满足[(AB/|AB|)+(AC/|AC|)]•BC=0,且(AB/|AB|)•(AC/|AC|)=½,判断三角形ABC的形状.(原题写

已知非零向量AB与AC满足(AB/AB+AC/AC)*BC=0且AB/绝对值AB*AC/绝对值AC=0.5,则三角形AB

三角形为等边三角形!你的题目打的可能稍微有点问题,我理解的应该是对的!首先,由第一个条件可得出三角形是等腰三角形.向量AB/|向量AB|+向量AC/|向量AC|得出的是边AB和边AC的角平分线,乘以向

已知非零向量AB与AC满足(AB/|AB|+AC/|AC|)*BC=0,且(AB/|AB|*AC/|AC|)=1/2,则

AB/|AB|表示AB边的单位向量,AC/|AC|表示AC边的单位向量,所以(AB/|AB|+AC/|AC|)表示的向量在角BAC的角平分线上,因为(AB/|AB|+AC/|AC|)*BC=0,所以角

已知非零向量AB与向量AC满足(向量AB除以 /向量AB/+向量AC除以/向量AC/)*

向量AB与向量AC满足(向量AB比向量AB的摩+向量AC比向量AC的摩)*向量BC=0,可知AB与AC边上的单位向量的和与BC垂直,由向量加法的平行四边形法则可知两个单位向量的和与它们的差垂直且平分,

已知非零向量AB与AC满足(AB/|AB|+AC/|AC|)*BC=0,且(AB/|AB|*AC/|AC|)=根号2/2

(AB/|AB|+AC/|AC|)*BC=0(AB*BC)/|AB|+(AC*BC)/|AC|=0|BC|cosB-|BC|cosC=0cosB=cosCB=C(AB/|AB|*AC/|AC|)=根号

已知非零向量ab满足|b|=1,且b与b-a的夹角为30º,则|a|的取值范围是

显然|a|=|-a|,因此设c=-a可以转而考虑b和b+c的夹角是30°简单的做个图,可以得到|c|最小值是1/2,最大可以趋向于无穷也即|a|>=1/2

设向量AB为非零向量,则0·向量AB=?0+向量AB=

0·向量AB=00+向量AB=向量AB由0向量的性质可以知道.谢谢采纳!

若向量ab均为非零向量,则a乘b=a向量的膜乘以b向量的膜是向量a与向量b平行的什么条件,为什么?

已知|axb|=|a||b|又|axb|=|a||b|sin则sin=1a,b垂直所以原题目是既不充分也不必要|axb|=|a||b|是a,b垂直的充分必要条件

若向量ab均为非零向量,则a乘b=a向量的膜乘以b向量的膜是向量a与向量b的什么条件,为什么?

a·b=|a|×|b|是不对的,根据定义应该为a·b=|a|×|b|×cos(a,b)所以是二者的非充分非必要条件如果楼主打错了,题目是a·b=|a|×|b|×cos(a,b)则是二者的充分必要条件,

已知向量AB=(6,1)向量CD=(-2,-3)非零向量BC

向量AB=(6,1)向量CD=(-2,-3)∵BC//DA∴DA=mBC又AB+BC+CD+DA=0向量∴(6,1)+BC+(-2,-3)+mBC=(0,0)(4,-2)+(1+m)BC=(0,0)∴

设A,B为2n阶正交矩阵,且|AB|= -1,证明存在非零向量x,使得Ax=Bx

设C=BT*A,其中BT代表B的转置那么C仍是正交阵,且题目表明|C|=-1只要证明存在非零向量x使得(C-I)x=0,就只要证明|C-I|=0即可.而|C-I|=|C-C*CT|=|C|*|I-CT

已知向量AB为非零向量且丨A+B丨=丨A-B丨求证A垂直B

将两边同时平方,化简得:向量A*向量B=0,即得证