四棱锥P-ADCD的底面是菱形 角BCD=60°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:48:40
四棱锥P-ADCD的底面是菱形 角BCD=60°
如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

在四棱锥P—ABCD中,底面ABCD是角DAB等于60°,且边长为a的菱形,侧面PAD

连接BD,则由已知条件可知△ABD是等边三角形,所以BG⊥AD,再由于两个面垂直,所以很容易证明BG⊥平面PAD再连接PA,由于△PAD是正三角形,G是中点,所以AD⊥PG,由于△ABD是正三角形,G

如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形,

(1)找PC中点M,则NM//=ED,所以NMDE是平行四边形,所以EN//MD,所以EN//平面PDC (2)链接EB,由题可知,∠EBC=90°,即BC⊥EB,又因为三角形PAD为正三角

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面是以∠ADC为锐角的菱形.

(1)若PA⊥CD,则PA⊥AB,因为AB//CD取CD中点E,连接PE,所以PE⊥CD,所以CD⊥平面PAE,所以CD⊥AE因为ED=1/2AD,又是菱形,所以∠ADC=60°(2)因为PA⊥AB,

在四棱锥P-ABCD中,侧面PCD是边长为2的正三角形且与底面垂直,底面ABCD是面积为2√3的菱形

(1)求证PA⊥CD作PE⊥DC交DC于E,因为PDC为边长为2的等边三角形,所以E为DC的中点.由ABCD的面积为2√3的菱形△ADC面积=√3=1/2*DA*DC*SIN∠ADC,√3=1/2*2

已知四棱锥P-ABCD的底面ABCD是平行四边形

连接AC∵ABCD是平行四边形∴向量AC=b+a向量CP=向量AP-向量AC      =c-(a+b)向量CE=1/2向量CP 

立体几何题如图,四棱锥P-ABCD的底面ABCD是菱形,AB=2,∠BAD=60°,且侧面PAB是正三角形,平面PAB⊥

 我们把底面画到了左图.它们的长度关系已经写出了.菱形的对角线互相垂直平分,所以AO=OC,由线面平行的性质定理,PC//EBD,三角形平面PAC过PC,且与EBD交于直线EO,所以PC//

数学立体几何如图所示,已知四棱锥p- ABCD,底面ABCD为菱形,且PA垂直于底面ABCD,M是PC上的任意一点,则下

分析:(1)取PB的中点为M连结AM,MF,利用已知条件证明AMFE是平行四边形,即可求证EF∥面PAB(2)利用已知条件通过直线与平面垂直的判定定理证明EF⊥面PBD(3)通过(2),利用BD⊥平面

已知四棱锥P-ABCD的底面是菱形,PA⊥底面ABCD,点E.F分别是CD,和PB的中点,求证EF∥平面PAD

证明:1.取PA的中点G,连结FG,DG.∵PF=FB,∴FG是△PAB的中位线,FG//AB,FG=AB/2.∵ABCD是菱形,∴AB//CD,∴DE//FG.又∵DE=CD/2=AB/2,∴DE=

在四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD

棱PC的中点就是F作△PAD底边AD的中线PG∵△PAD等边∴PG⊥AD  且AG=DG又面PAD⊥面ABCD∴PG⊥面ABCD连EG   DE&nb

如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点.

(本小题满分14分)证明:(1)连接AC,AC与BD相交于点O,连接OE,则O为AC的中点.∵E为PC的中点,∴EO∥PA.∵EO⊂平面EBD,PA⊄平面EBD,∴PA∥平面EBD.(2)设F为AD的

在底面是平行四边形的四棱锥P--ABCD中,

(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC   又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E

四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC中点

1)连接AC,BD交与M,连接FM因为ABCD为菱形,所以M为AC中点又因为F为三角形PAC另一边中点,△CFM和△CPA相似(自己简单证下)所以PA平行于FM所以PA平行于BDF2)因为菱形ABCD

已知四棱锥P-ABCD的底面ABCD为菱形,E是PD的中点.求证:PB∥ACE

证:连结AC,BD交于O连结OE因为ABCD为菱形所以O为DB中点则OE为三角形DPB中位线所以OE平行于PB又因为OE属于平面ACE所以PB平行于面ACE这种问题一般借用三角形中位线

已知四棱锥P-ABCD的底面是边长为2的菱形,且∠ABC=60°,PA=PC=2,PB=PD.

证明:(Ⅰ)连接AC与BD交于点O,连OP.∵PA=PC,PD=PB,且O是AC和BD的中点,∴PO⊥AC,PO⊥BD∴PO⊥平面ABCD.(Ⅱ)取PA的中点N,连接MN,则MN∥AD,则∠NMC就是

如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直于平面ABCD PA=AD=AC,点F为PC的中点

1.连接AC,BD交于点O连接FO因为F,O分别为PC,AC中点所以FO平行PA因为FO在平面BFD内,且PA不在平面BFD内所以PA平行于平面BFD2.这道题有空间直角坐标系做,我在这里就不具体写了

已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC的中点.求PA平行平面B

应该是“求证:PA‖平面BFD”吧!证明:连结BD,AC交于点O,连结FO∵PA⊥BDPA‖FO(中位线)∴FO⊥BD∴平面BFD⊥平面ABCD∵PA⊥平面ABCDPA不在平面BFD上∴PA⊥平面BF

已知四棱锥P-ABCD的底面是菱形,E为PA的中点,求证:pc//平面BDE.

链接ACBD,就是把菱形的对角线画出来.我们知道菱形的两条对角线互相平分,就是交点是中点.设此点为F那么在三角形APC中E是AP中点F是AC中点.中位线定理,EF平行于PCF又是BD的中点所以EF在面

四棱锥P-ABCD的底面ABCD为边长1的菱形,角BCD=60,E是CD中点,PA垂直底面ABCD,PA=2

1、连结BD,CD=BC,〈BCD=60度,∴△BCD是正△,E是CD中点,则BE⊥CD,CD//AB,故BE ⊥AB,AP⊥平面ABCD,BE∈平面ABCD,AP⊥BE,AP∩AB=A,∴