四边形abcd为正方形纸片,ef分别为ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:11:58
S△CBE=S△DCFSBEGF=S△DGCS△FGC≌S△DGCS△FGC/S△DGC=(FC/CD)^2=1/4S△FCD=4S△FGC=16/5SBEGF=16/5
设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿
∵平面PDC⊥平面ABCDCD为交线BC⊥交线CD∴BC⊥面PDC∵DE属于面PDC∴BC⊥DE∵△PDC为正三角形E为PC中点∴DE⊥CE∵CE交BC于点C∴DE⊥面BCE∴DE⊥BE∴∠BEC即为
连CG.有向个同底等高的三角形呢.以下直接用字母表示相应图形的面积有DEG=CGE=CGF=GFBADGB=ADCB-ECB-DEG=6*6-3*6/2-(3*6/2)/3=24
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC∴△ABC与△AFC是同底等高的三角形∵2S△ABC=S正ABCD,S正ABCD=2×2=4∴S=2故选A.
∵E为AD的黄金分割点∴AD∶AB=(√5+1)/2∵AD=AE+DE=AB+DE∴(AB+DE)/AB=(√5+1)/2即AB/DE=(√5+1)/2∵AB=AE∴AE/DE=(√5+1)/2∴S正
解法一:三角形BDE和BDF等底为3等高为6,所以面积相等,所以三角形1和2面积相等(等量减等量,差相等,如图1)三角形2和3等底为3且等高,所以面积相等,同时三角形3和4面积相等.所以三角形BCF面
∵E、F是BC、CD的中点,∴SΔBCF=SΔCDE=1/4,连接OC,则SΔOCE=SΔOBE=SΔOCE=SΔOBE=1/3*1/4=1/12,∴S四边形ABOD=1-4×1/12=2/3.
(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面
2梯形GBAF的面积=(FG+AB)乘以BG除以2=(FG+AB)乘以FG除以2=(BG+BC)乘以FG除以2=CG乘以FG除以2=△CGF的面积所以△AFC的面积=△ABC的面积=2乘以2除以2=2
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
∠EBC=15°很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
∵正方形ABCD和正方形EFGB,∴AB=BC=CD=AD,EF=FG=GB=BE,∵正方形ABCD的边长为2,∴S△AFC=S梯形ABGF+S△ABC-S△CGF=12×(FG+AB)×BG+12×
做BM⊥FC的延长线于M∵BD是正方形的对角线∴∠BDC=45°设正方形边长AB=AD=BC=CD=1∴BD=√(AB²+AD²)=√(1²+1²)=√2∵四边
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
连接BF∵ABCD是正方形∴∠ACB=45°∵BEFG是正方形∴∠FBG=45°∴∠ACB=∠EBG∴BF∥AC(同位角相等,两直线平行)∴△AFC和△ABC的高相等,(平行线间的距离相等)∵△AFC
必须得知道CE(即新正方形的边长)的长啊.另外,G是在CD边上,还是在DC延长线上?
方法一:因为折叠四边形ABCD为矩形纸片,所以AB=AE=CD=6,BF=EF所以可以求AD=BC因为BF+FC=BC,(BF的平方)-(FC的平方)=(CE的平方)所以(AF的平方)=(AB的平方)
由折叠的性质得BF=EF,AE=AB,因为CD=6,E为CD中点,故ED=3,又因为AE=AB=CD=6,所以∠EAD=30°,则∠FAE=12(90°-30°)=30°,设FE=x,则AF=2x,在