四边形ABCD是正方形,点G是BC边上任意一点,D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:11:00
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
(1)证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AFB
ABCD的面积=20*20=400;三角形CBE面积=三角形DFC=10*20/2=100;三角形CFG与三角形DFC相似,由面积比等于相似比的平方得:三角形CFG面积/三角形DFC面积=(CF/DF
易证:CE与DF垂直,(由于角CEB与角CDF互余,则角ADF与角AEC之和为180度,因此角A与角DGE之和为180度,即角DGE=90度)则三角形CGF与三角形CBE相似,而三角形CBE的面积为正
平行于正方形ABCD中两条已有斜线作平行线,分别交于A点和B点,4条斜线形成一个斜置的井字形,将正方形分成九块,除中央一块为一小正方形外,其交点分别为GHIJ,余下8块分别为4块全等的小三角形和4块全
(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC-∠EBC=∠EBF-∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△C
(1)证明: ∵四边形ABCD是正方形,BF⊥AG,DE⊥AG ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90° ∴∠BAF=∠ADE ∴△ABF≌△DAE ∴BF=AE,AF=
EF+FG=DE=AF,三角形ABF全等于三角形ADE,所以AE=FG,EF+FG=EF+AE=AF
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
正方形很简单因为本来大正方形四条边微都相等然后那四个点又都是中点所以那四条边都被平分还是相等所以中间是个正方形(你自己画个准确的图一看就知道了)!用全等证明~
还是正方形;连接大正方形的两条对角线,由中位线定理知:四边形EFGH是平行四边形;由正方形对角线垂直且相等得平行四边形EFGH的邻边垂直且相等;所以平行四边形EFGH是正方形;
题写错了吧?应该是证明四边形EFGH是平行四边形吧?提示一下吧,知道思路很容易了由已知证出△AHE≌△BEG≌△CFG≌△DGH即可得到EF=FG=GH=HE由此首先可以知道四边形EFGH是菱形接下来
证明:(1)∵∠BAD=90°,DE⊥AG∴∠ADE+∠DAE=∠BAF+∠DAE=90°∴∠BAF=∠ADE∵AD=AB,∠AFB=∠AED=90°∴△ABF≌△DAE(2)线段EF与AF、BF的等
证明:因为四边形ABCD是正方形所以角BAG+角DAG=90度,AB=AD又因为BF垂直AG,DE垂直AG所以角ABF+角BAF=90度,角ADE+角DAE=90度所以角BAG=角ADE,角ABF=角
2)EF:GF=2,理由:△BGF∽△AGB∽△ABF, △ABF≌△DAEG为BC边中点, BG:AB=FG:BF=BF:AF=1:2,&nb
1)延长DE交AB于H∵DE⊥AG,BF//DE∴BF⊥AC,∠DAG=∠AHD∵AD∥BC==>∠DAG=∠AGB∴∠AGB=∠AHD,△BGF∽△DAE∴△AHD≌△GBA又∵G为BC边中点∴H为
角BAG+GAD=GAD+ADE=90;则角BAG=ADE;又因AD=AB,角AED=AFB=90;则三角形ADE全等ABF;即AE=BF;——1式延长DE交AB于H,则三角形ADH全等ABG(AB=
设EF=a则S△BEF=0.5a(a+4)S梯形CEFD=0.5a(a+4)S△ABD=8△BDF的面积是S△BDF=S梯形CEFD+S□ABCD-S△BEF-S△ABD=8
延长DC,AF交于N,则三个三角形NCF,ABF,DAE都全等,得角AME=BAF,DC=CN,因角ADE+AED=90度,所以角BAF+AED=90度,角AME=90度=DMN,CM是斜边上中线,所