四边形ABCD的对角线bd被E.F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:44:16
AECF是平行四边形AF=ECEO=FOE,F分别是BO,OD的中点BE=DF角OEC=角OFA180C-OEC=180-OFABEC=DFAAF=ECBE=DFBEC全等DFAL.EBC=L.ADF
/>∵EF‖AC‖HG,EH‖BD‖FG∴四边形EFGH是平行四边形,且EF=AC=HG,EH=BD=FG(1)当AC=BD时可得EF=FG则四边形EFGH是菱形(有一组邻边相等的平行四边形是菱形)(
1.证明:因为平面与空间四边形ABCD的对角线AC、BD都平行,且交空间四边形的边AB、BC、CD、DA分别于E、F、G、H所以EF//AC,GH//ACEH//BD,FG//BD故EFGH为平行四边
(1)∵E,H为AD,AC中点∴可证在△ACD中EH为CD边的中位线∴EH平行且等于1/2CD又∵F,G为BD,BC中点∴可证在△BDC中FG为CD边的中位线∴FG平行且等于1/2CD∴EH∥CD∥F
5平方厘米.把这个四边形分成六个三角形,分别是△ABE,△AEF,△AFD;△BEC,△CEF,△CFD;前三个的面积分别是:(1/3)BE×h;(1/3)EF×h;(1/3)FD×h,EF又为BD的
过A、B两点作BD的垂线,垂足分别是M、N.则三角形ABE、AEF、AFG、AGD的面积都相等.因为E、F、G四等分BD,所以四个三角形底相等,而高都是AM,所以面积相等.同理可证:三角形CBE、CE
帮你找到原题了,真的一模一样http://www.qiujieda.com/math/167483/以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可
如果ABCD是平行四边形的话,EFGH就是平行四边形.因为EF,FG,GH,HE分别是大四边形被对角线划分出来的四个三角形的中线,必与底线平行.总之大的是什么形状,小的就什么形状.不过缩小版而已.
ABCD为矩形,所以AE∥CD且有CE∥BD,所以四边形BECD两组对边分别平行,为平行四边形因此BE=CD=ABABCD为矩形,所以△ABC为直角三角形,BO为斜边上中线所以AC=2BO=8RT△A
如图,在四边形ABCD中,对角线AC,BD相交于点O,E,F分别为OA,OC的中点,求证:四边形BFDE是平行四边形答案:【必须是平行四边形ABCD】证法1:∵四边形ABCD是平行四边形∴AO=CO,
结论有误,应该是:EF
设BC中点为G,连接EG、FG.由中位线的性质,EG=1/2*AB,FG=1/2*CD,在三角形EFG中,EF
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
证明:∵E是AB中点,F是BC中点∴EF是△ABC的中位线∴EF=1/2AC同理可得FG=1/2BD,HG=1/2AC,EH=1/2BD∵AC=BD∴EF=FG=GH=HE∴四边形EFGH是菱形
EFGH是平行四边形.问:1、当AC、BD满足什么条件时,四边形ABCD是矩形?2、当AC、BD满足什么条件时,四边形ABCD是菱形?3、当AC、BD满足什么条件时,四边形ABCD是正方形?是否这样补
∵AE⊥BD∴∠AED=90°∵CF⊥BD∴∠CFB=90°∵∠AED=90°∠CFB=90°∴∠AED=∠CFB∴AC‖AE∴四边形AECF为平行四边形
解题思路:根据平行四边形的性质可得到AB=CD,AB∥CD,从而可得到∠1=∠2,根据AAS即可判定△AEB≌△CFD,由全等三角形的性质可得到AE=CF,再根据有一组边平行且相等的四边形是平行四边形
∵ABCD是平行四边形∴AB=CDAB∥CD∴∠ABE=∠CDF∵AE⊥BD,CF⊥BD∴AE∥CF∠AEB=∠CFD=90°∴△AEB≌△CFD∴AE=CF∴四边形AECE为平行四边形
证明:CE、CF的延长线分别交AB、AD于G,H连接AE,AFDF/DE=DH/DA=1/2所以FH平行于AE即CF平行于AEBE/BF=BG/BA=1/2所以EG平行于AF即CE平行于AF所以AEC