圆O的直径AB=4,角ABC=30度,BC=4倍的根号3,D是线段BC的中点.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:48:58
圆O的直径AB=4,角ABC=30度,BC=4倍的根号3,D是线段BC的中点.
如图所示,圆o的直径AB=4.角ABC=30°BC=4根号3,D是线段BC的中点!判断点D与圆o之间的位置关系 并说明理

设BC与圆交与点E,连接BE.则三角形BAE为直角三角形.(在圆上,过圆直径的三角形为直角三角形)BA=4,角ABE=30¤,=>BE=2根号3因为D为BC的中点所以BD=DC=2根号3=BE即E点就

如图,圆O的直径AB=4,角ABC=30°,BC=4根号3,点D是线段BC的中点,试判断点D与圆O的位置关系,并说明理由

设BC交圆于D1连接AD1角ABC=30°AB=430度角所对的直角边是斜边的一半则AD1=2BD1=2倍根号3,BC=4根号3,点D是线段BC的中点所以DD1是同一点.D在园上

圆O的直径AB=10,角ABC=30度,求BC的长

长为5以直径为边的圆内接三角形都是直角三角形bc是30度角的对边所以它是直角边的一半

AB是圆O的直径AB=6角CAD=30度,求弦长DC

连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3

如图,在Rt△ABC中,角ABC=90°,以AB为直径作圆O交AC与D,过D做圆O的切线DE交BC于E,求证:BE=CE

证明:联结BD,则由于AB是圆O的直径,∠BDA=90°,即BD⊥AC.由于OB⊥BE,故EB是圆O的切线.又因为ED是圆O的切线,故由切线长定理,EB=ED,E在线段BD的垂直平分线上.设BC的中点

如图所示Rt三角形ABC,角ABC=90度,以AB为直径作圆O交于AC于D,E为BC的中点连接DE求证DE为圆O的切线

证明:连接OD,OE∵AB是直径∴∠ADB=∠CDB=90°∵E是BC的中点∴ED=EB∵OB=OD,OE=OE∴△ODE≌△OBE∴∠ODE=∠OBE=90°∴DE是⊙O的切线

AB是圆O的直径,弦BC等于2,角ABC等于60度.

第一问∵在三角形OBC中OC=BC,且∠OBC=60度∴三角形OBC是等边三角形∴半径=BC=2∵CD与圆O相切∴OC⊥CD又∵∠COB=60°∴OD=2CO=4∴BD=2第二问∵AB是直径∴∠C=9

在三角形ABC中,角A=60度,以BC为直径的圆O分别交AB,AC于D,E.

(1)∵∠A=60°,AB=AC,  ∴△ABC为等边三角形,   ∴∠B=∠C=60°;又∵OB=OD,OE=OC;  ∴△BO

已知三角形ABC内接于圆O,角BAC=120度,AB=AC=6,求圆O的直径

∵∠BAC=120°且AB=AC=6且此三角形为正三角形∵△ABC内接于圆O∴连接AO∴AO⊥且平分BC∴AO=OC=BC∴BC=2*OC=2*6=12都参加工作好几年了,

如图,在△ABC中,已知角ABC=90°,AB上一点E,以BE为直径的圆O恰与AC相切于点D,若AE=2cm,AD=4c

连接D、O.OD为圆半径.因为AC为圆的切线,显然OD垂直于AD(1)设圆的半径为r那么在直角三角形AOD中(r+AE)^2=AD^2+r^2(r+2)^2=4^2+r^2r^2+4r+4=16+r^

如图,三角形abc中,角abc=90度,以ab为直径的圆o交ac于d,e是bc的中点.求证:de是圆o的切线.

证明:连接BD∵AB是直径∴∠ADB=90º【在角所对的圆周角是直径】∴∠BDC=90º∵E是BC的中点∴DE=BE【直角三角形斜边中线等于斜边的一半】连接OE∵OB=OD=半径,

如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:B

取AB中点F,则FD=FB,FD垂直DE角FBD=角FDB,角A=角ADF角FBE=角FDE=90度1故角EBD=角EDB故BE=DE2故角ADF+角DEC=90度,又角A+角C=90度故角EDC=角

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

如图,ab是圆o的直径,点c,d在圆o 上,点e在圆o外,角eac=角d=60度,求角abc的度数,ae是是圆o的切线,

ea是切线,ab是直径,所以角eab,acb都是90度,角abc是30度,bc=4由三角关系半径是4角aoc120度是圆周长的三分之一所以劣弧长为三分之八π

圆O是三角形ABC的外接圆,CG是直径,CE垂直AB于E,CA=4,CB=6,CE=3,求CG的长

连接BG.因为CG是直径,CE垂直于AB,所以角CBG=角1(角AEC)=90度.因为角A=角G,所以三角形CEA相似于三角形CBG,所以CE:CB=CA:CG.因为CA=4,CB=6,CE=3,所以

AB是圆O的直径,PA垂直于圆O所在的平面,C是圆上一点,∠ABC=30,PA=AB.

直线PC与平面ABC所成角=∠PCAAC=1/2ABPA=AB∠PAC=90所以tan∠PCA=2即直线PC与平面ABC所成角的正切值2希望能帮到你,祝学习进步O(∩_∩)O,也别忘了采纳!

AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的点,若AB=2,PA=根号3,角ABC=30,则二面

根据直径所对的圆周角是直角,得到角ACB=90,又角ABC=30且AB=2,所以AC=1,BC=根号3.再求PC=2,PB=根号7.所以有PC^2+BC^2=PB^2,推出角PCB=90.则角ACB就

如图△ABC内接于圆O,AB是圆O的直径,角CBD=角ABC判断直线AD与圆O的位置关系

应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B