圆o的直径AB等于4,角AB等于30度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:55:50
连接CO∵CD为⊥于直径的弦∴CE=DE∵∠C=30°∴∠A=60°∵OA=OC∴△ACO为等边三角形∴AC=AO=OD∵∠AEC=∠DEO=90°∴△ACE≌△ODE(HL)∴S△ACE=S△ODE
连接CO交AF于H连OEAC弧等于FC弧所以C为AF弧的中点则OC⊥AF因为CD⊥ABOC=OA∠COD=∠AOH△COD≌△AOH则OD=OH则CH=AD可推△EAD≌△EVHAE=CE
参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对
25-16=9答案=3再问:还是不会可以详细写吗?再答:10/2=58/2=45*5-4*4=3*3UNDERSTAND?
60度再问:求过程!再答:好吧!稍等再答:因为CO=DO,所以
因为AB是直径所以∠ADB=90度又因为∠DAB=∠DCB=30度所以DB=1/2AB=1/2*6=3
有两个答案:22cm或8cm先画图:一种是ab和cd在直径的同侧;另一种是ab和cd分别在直径的两侧.但只要解决ab和cd与直径的距离,就解出来了.连接ao,co,再连接o和ab的中点e,cd的中点f
连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3
过O作OE⊥PC于E,过O作OF⊥PD于F,∵PB平分∠CPD∴∠EPO=∠FPO,∠OFP=∠OEP,OP=OP∴△OPF≌△OPE∴OE=OF,PE=PF根据垂径定理,知CE=DF∵PE=PF∴C
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
第一问∵在三角形OBC中OC=BC,且∠OBC=60度∴三角形OBC是等边三角形∴半径=BC=2∵CD与圆O相切∴OC⊥CD又∵∠COB=60°∴OD=2CO=4∴BD=2第二问∵AB是直径∴∠C=9
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
角D=A,C=B三角形DEC相似于AEB,你的题目好象少条件的
因为:圆O的直径为8所以:OC=4因为:OA等于OB,AB与圆O相切与点C所以:三角形OAB是一个等边三角形,且C为AB中点,OC垂直于AB所以:AC=BC=5所以:OA=根号(OC的平方+AC的平方
130度再问:过程麻烦写下,谢谢哈再答:因为AB垂直CD易得出角COA等于角AOD(相似三角形)即角COB等于角DOB因为劣角COD等于100°可得优角为260°角BOD等于优角COD的一半即130°
连接OC,得OC=根号(CD^2+OD^2)=根号(4^2+3^2)=5AB=2OC=10
角DCB=角CDB=15度角CBO=75度角COE=30度半径OC=OE/cos30°=2根号3/[(根号3)/2]=4⊙O半径=4
连接OB,因为AB=OC所以OB=AB,所以∠A=∠BOA所以∠OBE=∠BOA+∠A=2∠A因为∠EOD+∠BOE+∠BOA=180°=∠BOE+∠OBE+∠OEB即,∠EOD+∠A=4∠A所以,∠
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的