在Rt△ABC中,斜边AB=10,内切圆半径为r,则r的最大值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:46:14
AB^2+BC^2+CA^2=AB^2+AB^2=2*AB^2=2*2^2=8
证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】
证明:在Rt△ABC和Rt△BAD中,AB=BAAC=BD,∴Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,∴AE=BE.
证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).
EF=1/2ABCD=1/2AB所以CD=EF
(1)证明:∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED,在△ACE和△BDE中,∠AEC=∠BED∠C=∠D=90°AC=BD∴△ACE≌△BDE(AAS),(3分)∴AE=BE;(4分)(2
(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下
证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC
证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠
根据勾股定理:BC²+CA²=AB²则AB²+BC²+CA²=2AB²=2×2²=2×4=8
∵Rt△ABC向右平移5㎝∴AD=BE=5cm,且∠FDE=∠CAB又∵AB=10㎝∴BD=5㎝∴BD=(1/2)AB=(1/2)DE∵在△ABC与△阴影中∠FDE=∠CAB,∠ABC=∠DBC∴△A
再问:D、E、F分别是△ABC各边中点,DE、AF相交于点O.试证明DE与AF互相平分.再问:再问:帮下忙。。。。再答:等下再答:再问:再问:E为平行四边形ABCD边DC的延长线上的一点,且CE=DC
将三角形补充为一个矩形,使得两直角边为矩形的长与宽,由矩形对角线互相平分且相等可得CD=1/2AB
如右图所示,在Rt△ABC中,AB2=BC2+AC2,又∵AB=1,∴BC2+AC2,=AB2=1,∴AB2+BC2+AC2=1+1=2.故答案是2.
∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½
OC=√AC^2-AO^2=√5-1=2∵∠BCO+∠ACO=90°∠ACO+∠A=90°∴∠BCO=∠A∵∠B+BCO=90°∴∠B=∠ACO∵∠COB=∠COA=90°∴△AOC∽△COB
根据题意,A点坐标是(-1,0)因为|OA|=1|AC|=√5,所以,|OC|=2则C点坐标是(0,2)AC所在的直线是y/2-x=1,即y=2x+2因为BC垂直于AC,所以,BC所在直线的方程是y=
/>∵CD在斜边中线,CD=2∴AB=4根据勾股定理AC=√15∵CD=BD∴∠A=∠ACD∴cos∠DCA=cosA=√15/4∵CD=BD∴∠DCB=∠B∴sin∠DCB=sinB=√15/4
∵在Rt△ABC中,CD是斜边AB上的高,∴∠A+∠B=90°,∠A+∠ACD=90°,∴∠B=∠ACD.∴sinB=AC:AB=AD:AC.∵BD:AD=1:3,∴AD=3BD,AB=4BD,∴AC
第一题:用正弦公式:a/sinA=b/sinB=c/sinC,可知:a/sinA=c/sinC得:a/sin(45+30)=6/sin90又由正弦定理:sin(A+B)=sinAcosB+cosAsi