在△abc中 ab=ac 以ac为半径作圆o交bc于点d 过点d作圆o的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:39:11
(1)证明:如图,连接OD,AD.∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴∠BAD=∠CAD,∠B=∠C,BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵O
证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,
1、连接AD,OD∵AB是直径,∴∠ADB=90°,即AD⊥BC∵AB=AC,那么根据等腰三角形底边中线,高、和顶角平分线三线合一:∠BAD=∠CAD∵OA=OD,∴∠BAD=∠ODA=∠CAD∵DF
证明:因为AB=AC,所以三角形ABC是等腰三角形;由
(1)证明:连接OD,如图,∵AB=AC,∴∠C=∠B,∵OD=OB,∴∠B=∠1,∴∠C=∠1,∴OD∥AC.∴∠2=∠FDO,∵DF⊥AC,∴∠2=90°,∴∠FDO=90°,∵OD为半径,∴FD
证明:连接AD.∵AB是直径∴∠ADB=90°∴AD⊥BC∴∠BAD=∠CAD∴BD=DE.
解题思路:二次函数探求函数的最值.解题过程:最终答案:略
(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A
解题思路:(2)∠AED的度数应该不变;如果过A分别作BD、CF的垂线,设垂足为H、G,则四边形AHEG是矩形;由(1)的全等三角形知:AH=AG(全等三角形对应的高线相等),故四边形AHEG是正方形
选择:D阴影面积=整圆-S△ABC=16π-12√7再问:��˵D����˵C�������ĸ���再答:S��Բ��16�У�S��ABC=12��7��Ӱ���S��Բ-S��ABC=16��-1
连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠
过点A作AM⊥BE于M,AN⊥CD于N∵∠BAD=60,AB=AD∴等边△ABD∴∠ABD=∠ADB=60∵∠BAE=∠BAC+∠CAE,∠DAC=∠BAC+∠BAD,∠BAD=∠CAE∴∠BAE=∠
连接OD,证明OD垂直DF
1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE+∠ABE=90所以∠
如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,
解:连接BE,AD.AB为直径,则∠BEA=∠ADB=90°,BE垂直AC.又AB=AC,则BD=CD.∵DG垂直AC.∴DG∥BE,⊿CGD∽⊿CEB,CG/CE=CD/CB=1/2,则CG=(1/
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
连接AD则角ADB=90度则D为BC中点,则OD为三角形ABC中位线则OD//AC,又因为DE垂直于AC,所以DE垂直于OD,则是切线第二问和第一问差不多,仔细想一下就出来了.第三问只须证出AODE为
设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=12BC=8,而AB=AC=10,CB=16,∴AD=AC2−DC2=102−82=6,∴阴影部分面积=半圆AC的面积