在△ABC中,角B,角C的角平分线BE,CF相交于O,AG垂直BE于G
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:38:45
由tanA+B2+tanC2=4得cotC2+tanC2=4∴cosC2sinC2+sinC2cosC2=4∴1sinC2cosC2=4∴sinC=12,又C∈(0,π)∴C=π6,或C=5π6由2s
60c知a角最大,由a^2
由余弦定理及已知条件可得a2+b2-ab=4.又∵△ABC的面积等于3.∴12absinC=3,得ab=4.联立方程组a2+b2−ab=4ab=4,解得a=2,b=2.
(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si
1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2
一般三角形的射影定理:c=acosB+bcosAb=acosC+ccosAa=bcosC+ccosB所以,acosB+bcosA=cps:简略证明如下:三角形中,sin(A+B)=sinC展开得:si
1、cosBsinA/cosAsinB=(3sinc-sinb)/sinbcosbsina=cosa(3sinc-sinb)sin(a+b)=3sinccosacosa=1/3tana=2√2两向量积
证明:∵acos2C2+ccos2A2=3b2,∴sinA1+cosC2+sinC1+cosA2=3sinB2,即:sinA+sinAcosC+sinC+sinCcosA=3sinB,∴sinA+si
由正弦定理asinA=bsinB=csinC=2R,得:sinB-sinC=2sinA•cos(60°+C),…(2 分)∵A+B+C=π,故有:sin(A+C)−sinC=sinAcosC
有正弦定理可得a/sinA=b/sinB=2R(R为三角形外接圆半径)所以等式两边同除以2R得sin²AsinB+sinBcos²A=sinA·根下2所以sinB(sin²
由1+tanAtanB=2cb可得1+sinAcosBcosAsinB=2cb由正弦定理可得,1+sinAcosBcosAsinB=2sinCsinB,整理可得,sinAcosB+sinBcosAsi
(Ⅰ)∵tanC=37,∴sinCcosC=37.又∵sin2C+cos2C=1,解得cosC=±18.∵tanC>0,∴C是锐角.∴cosC=18.(Ⅱ)∵CB•CA=52,∴abcosC=52.解
(1)∵A+B+C=π∴A+C=π-B1∵A-C=π/321式+2式得2A=4π/3-BA=2π/3-B/21式-2式得2C=2π/3-BC=π/3-B/2(2)m.n=ab+bc=2b^2=b(a+
已知,在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab所以,(a+b+c)(a+b-c)=(a+b)²-c²=a²+b²-c
由a,b,c成等差数列,得到2b=a+c,即b=a+c2,则cosB=a2+c2−b22ac=a2+c2−(a+c2)22ac=3(a2+c2)−2ac8ac≥6ac−2ac8ac=12,因为B∈(0
余弦定理:cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-1=ac令t=a+ct^2=a^2+c^2+2ac=1+3ac(a+c)^2>=4acac
a=2√2c,b=3c,所以2ab=12√2c^2.
∵ab+ba=6cosC,由余弦定理可得,a2+b2ab=6•a2+b2−c22ab∴a2+b2=3c22则tanCtanA+tanCtanB=cosAsinCcosCsinA+cosBsinCcos
证明:∵acos2C2+ccos2A2=a•1+cosC2+c•1+cosA2=a+c2+12(a•a2+b2−c22ab+c•b2+c2−a22bc)=12(a+b+c),∴acos2C2+ccos