在△ABC中,角B=47°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:58:56
在△ABC中,角B=47°
在三角形ABC中,b=2a,B=A+60° 求角A

由正弦定理得b/sinB=a/sinA因为b=2a,B=A+60°,所以2a/sin(A+60°)=a/sinA2sinA=sin(A+60°)=sinAcos60°+cosAsin60°=1/2si

在Rt三角形ABC中,角B=90度

在三角形BCD中sin15/sin45=10/BC,可以算出BC在三角形ABC中tan30=BC/AB,可以求出AB

在△ABC中,若sinA/a=cosB/b,求角B

正弦定理懂不懂正弦定理的内容就是a/sinA=b/sinB所以sinA/a=sinB/b而原题是sinA/a=cosB/b所以sinB/b=cosB/b那么sinB=cosBB=45

在△ABC中B=30°,c=120°,则a:b:c

△ABC中B=30°,C=120°,则A=30°a:b:c=sinA:sinB:sinC=1:1:√3

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α

以B点为圆心做个长度为2的元,那A,A1,C,C1全在圆上,在0<α≤60°时候,∠ABC1=120°+α,∠A1BC=120°-α,∠ABC1>∠A1BC,在圆里面AC1>A1C;在60°<α<90

在△ABC中,已知A=45°,B=60°,求a/b.

因为在三角形ABC中.根据正弦定理:a/sinA=b/sinB=k(k为常数)则:a=sinA·k,b=sinB·k则:a/b=sinA·k/sinB·k=sinA/sinBsin45°/sin60°

已知在△ABC中,∠B=30°,b=6,c=63

在△ABC中,∵∠B=30°,b=6,c=63,由余弦定理可得b2=a2+c2-2ac•cosB,即36=a2+108-123a×32,解得a=12,或a=6.当a=12时,S=12ac•sinB=1

在三角形ABC中,(角B

如图:在图1中:在三角形DEF中,∠DEF=90-∠FDE,在三角形BDA中,∠FDE=180-∠B-∠BAD=180-∠B-1/2∠A,在三角形ABC中,∠A=180-∠B-∠C,所以,∠FDE=1

在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab则cos(A+B)

已知,在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab所以,(a+b+c)(a+b-c)=(a+b)²-c²=a²+b²-c

在△ABC中,已知C=2B,

我觉得题目是不是有错?我得出的结果是c²-b²=ab...由C=2B,得sinC=sin2B=2sinBcosB,则有sinC/sinB=2cosB(a).由正弦定理得sinC/s

在△ABC中,已知c=√3.b=1.B=30° ⑴ 求角A; ⑵求△ ABC的面积

sinC/sinB=c/b=√3sinc=√3/2即C=60或者C=120°那么A=90°或者A=30°当A=90°时S△ABC=√3/2当A=30°时S△ABC=√3/4

在△ABC中,a、b、c分别是角A、B、C的对边,如果2b=a+c,B=30°,△ABC的面积是32,则 b=

∵B=30°,△ABC的面积是32,∴S=12acsin30°=12×12ac=32,即ac=6,∵2b=a+c,∴4b2=a2+c2+2ac,①则由余弦定理得b2=a2+c2−2ac×32,②∴两式

在△ABC中,已知c=3,b=1,B=30°,

(1)由正弦定理可得sinCsinB=cb,∵c=3,b=1,B=30°,∴sinC=32∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°;(2)∵S=12bcsinA

在△ABC中,已知a=根号2,b=根号3.B=60°,求角C

a:sinA=b:sinB,把数据代入,得sinA=二分之根号二,且角A不可能为135度,则角A为45度,角C=180-60-45=75度啦~

在△ABC中,因为角ABC=80°,又因为CD=AB,所以,由图可知,角B=角ABC,因为角ABC=80°,所以角B=8

你的原题中在△ABC中,因为角ABC=80°,又因为CD=AB,所以,由图可知,角B=角ABC,因为角ABC=80°,所以角B=80°其中D在什么位置?没有图,怎么知道这个D与本题有什么关系呀?如果没

在△ABC中,角A,B,C所对的边分别为a,b,c,a=1,B=45°,S△ABC=2,则△ABC的外接圆半径为(  )

∵a=1,B=45°,S△ABC=2,∴12acsinB=12csin45°=2,解得c=42,由余弦定理,得b2=a2+c2-2accosB=1+32-2×1×42cos45°=25,∴b=5,设外

在ABC△中,AB=BC,∠ABC=120°将ABC△绕点B顺时针旋转角α得△A1BC1,

(1)BE=BF理由如下:如上图,∠A=∠C1,AB=C1B,∠ABA1=α=∠C1BC∴△ABE≌△C1BF∴BE=BF (2)四边形BC1DA为菱形理由:如上图,∵∠ABC=120°,A

在△ABC中,若∠B=45°,b=2

在△ABC中,若∠B=45°,b=2a,由正弦定理asinA=bsinB,可知,asinA=2asin45°,所以sinA=12,∴A=30°,或A=150°,因为∠B=45°所以A=30°,∵A+B

在△ABC中,a、b、c分别是角A\B\C的对边,若a=1,B=45°,S△ABC=2,求△ABC外接圆面积

由三角形面积公式得S△ABC=1/2ac*sinb又因为a=1,B=45°S△ABC=2所以得2=1/2*1*c*1得c=8由余弦定理b2=a2+c2-2ac*cosb得b=7由正弦定理b/sinb=