在三角形ABC中,abc分别为内角ABC的对边,且2asinA=2b csinB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:33:40
在三角形ABC中,abc分别为内角ABC的对边,且2asinA=2b csinB
如图,在三角形ABC中,D、E分别为BC、AD的中点,且三角形ABC的面积为4,则三角形AEC等于

D为BC中点所以S三角形ACD=1/2S三角形ABCE为AD中点所以S三角形AEC=1/2S三角形ACD所以S三角形AEC=1/24S三角形ABC=1

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

高中三角函数:在三角形ABC中,abc分别为角ABC的对边,abc三边成等差数列,且B=45度,则cosA-cosC=

2b=a+c,sinB/b=sinA/a=sinC/c=(sinA+sinC)/a+c;求和公式.所以sinA+sinC=根号2;自己算算下面应该会了吧再问:好长时间没做高中题了,基本都忘了,能帮忙做

如下图 在三棱柱ABC=A1B1C1中 三角形ABC与三角形A1B1C1都为正三角形且AA1⊥面ABC F.F1分别是A

证明1:由题意可知,在平面ACC1A1上,直线AF∥直线C1F1,且直线AF=直线C1F1,所以四边形AFC1F1为平行四边形,即直线AF1∥直线FC1,所以直线FC1∥平面AF1B1同理,在平面F1

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

在三角形中,角ABC所对的边分别为abc已知tan(A+B)=2求sinC

tan(A+B)=2因为C=180º-(A+B)所以,tanC=-tan(A+B)tanC=-2sinC=-2cosC=-2√(1-sin²C)sin²C=4-4sin&

如图,在三角形ABC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE的中线,且三角形ABC的面积为12

结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三

在三角形ABC中,角ABC的对边分别为abc,B等于三分之派

cosA=(b^2+c^2-a^2)/2bc=(sinB^2+sinC^2-sinA^2)/2sinBsinC=4/5sinB=(根号3)/2sinA=3/5代入求解吧

在三角形ABC中abc分别是角ABC的对边长,S为三角形ABC的面积且4sinBsin²(4/π+2/B)+c

1.问一下,是4sinBsin²(π/4+B/2)+cos2B=1+根号3吧?化简得2sinB【1-cos(π/2+B)】+cos2B=1+根号3继续化简得sinB=1/2根号3所以B=π/

高中三角函数=0-在三角形ABC中,角ABC所对的边分别为abc.

1.由题意得(a+c)/b=pa+c=5/4a^2+2ac+c^2=25/16ac=1/4b^2ac=1/4a^2-2ac+c^2=25/16-4ac(a-c)^2=9/16a-c=3/4a=1c=1

在三角形ABC中abc分别是

你的题不全啊怎么回答啊

在三角形abc中abc的对边分别为abc 且(2c-b)cosa-acosb=0

由正弦定理可得:a/sinA=b/sinB=c/sinC=2R代入(2c-b)cosA-acosb(2sinC-sinB)cosA=sinAcosB2sinCcosA=sin(A+B)=sinCcos

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

如图,在三角形AC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE、的中线,且ABC面积12,求三角形

图呢再问: 再答:12除以2再除以2=3(因为是中点),是三角形ABEBEDAECEDC的面积;3乘2=6,是三角形BEC的面积,又因为BF是CE的中点,也就是三角形BCE面积的一半;6除以

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略

在三角形ABC中,三边长分别为4,6,8判断三角形的形状

最大边88^2=64>36+16=6^2+4^2所以是锐角三角形

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3