在三角形ABC中,三角形BDE,DCE,ACD的面积分别为90,30,28cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:17:00
证明:∵AD⊥BC,CE⊥AB,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BDE,又∴∠B=∠B,⊿BCE∽⊿BAD,∴BD:BE=AB:BC,即BD:AB=BE:BC,又∴∠B
分别过点E、A做BD、BC边的高,交BD于点F,交BC于点G.因为AE=BE,则AG=2EF,设EF为h,DC为x三角形BDE和三角形ABC的面积分别为(1/2)*2x*h=6;(1/2)*3x*2h
数学老师来帮你S△ADE/S△BDE=AD/DB=3/2因为这两个三角形高是相等的,面积之比就是底边之比又因为DE//BC显然△ADE相似于△ABC,相似比为AD/AE=3/5根据相似三角形面积之比等
“CD=2AF”应是“CD=2AD”S⊿BDE:S⊿DEC=BE:EC=1:2,得S⊿DEC=2*14=28S⊿BCD:S⊿ABD=CD:AD=2:1=42:S⊿ABD,得S⊿ABD=21S⊿ABC=
这道题的思路比较简单,就是通过底和高的关系来寻找比例,就是打字比较麻烦;如图所示:在三角形ADE和三角形BDE中,以AB为底边做高,则两三角形共高.即BD:AD=1:2;做DF垂直于AE交AE于F;做
S三角形CDE=2S三角形BDE=28S三角形BCD=S三角形CDE+S三角形BDE=42S三角形BCD=2S三角形ABDS三角形ABD=21S三角形ABC=S三角形BCD+S三角形ABD=63
S三角形CDE=2S三角形BDE=28S三角形BCD=S三角形CDE+S三角形BDE=42S三角形BCD=2S三角形ABDS三角形ABD=21S三角形ABC=S三角形BCD+S三角形ABD=63再问:
在△DBE和△DEC中,因为EC=2BE,所以△DEC的面积=△DBE的面积*2,所以△DBC的面积=△DEC的面积+△DBE的面积=△DBE的面积*3.在△DBC和△ABD中,因为CD=2AD,所以
通过观察可以知道△BDE和△CED是不同底但同高的三角形且EC=2BE因为△BDE的面积为14,所以△DEC的面积为14*2=28又因为CD=2AD,EC=2BE,所以DE‖AB所以△ABC与△DEC
因为:AD⊥BC,CE⊥AB所以:cos∠B=BD/AB=BE/BC因为:∠B=∠B,BD/AB=BE/BC(两边对应成比例,且夹角相等)所以:△BDE∽△BAC
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
连接ED,延长ED,CA交于点F,连接BF因为AD垂直平面ABC,EC垂直平面ABC所以AD//EC因为CE=2AD所以AD是三角形FCE的中位线所以AF=AC因为AB=AC所以AB=AF=AC所以角
方法一:延长ED交CA的延长线于F.∵AD⊥平面ABC、CE⊥平面ABC,∴AD∥CE,又CE=2AD,∴AC=AF,又AB=AC,∴AB=AC=AF,∴A是△BCF的外心,∴BF⊥BC.∵CE⊥平面
△ABC∽△BDE由角B=60°,BE/AB=BD/BC=1/2得△ABC∽△BDE,相似比为2所以S△ABC=4*5=20CM².
提示:可先证△ABD∽△CBE,AB:CB=BD:BE,又角B公共,可证△ABC∽△DBE,(DE:AC)平方=1:4,DE:AC=1:2,所以DE=AC/2=3
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略