在如图三角形中,de是三角形的中位线,af是bc边上的中线,af,de互相平分吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:51:47
cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
延长ED,使DG=DE,连接CG、FG,∵DF⊥EG,∴EF=FG∵ΔDEB≌ΔGCD(边,角,边)∴BE=CG∵CF+DG>FG(Δ两边之和大于第三边)又∵GF=BE,FG=EF∴BE+CF>EF
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
1、(1)AB=AE+CE延长ED与AB交与E’可证AE'D≌AED,E'DB≌CED有此得AB=AE+CE(2)CE=7/4延长AD至F.使得AD=DF所以ABD≌CDF所以AB=CF角B=角DCF
设AE=x公分,则S△DCE/S△ACD=DE/AD=6/(6+x),S△ADC/S△ABC=DC/BC=3/4,上述两式相乘得S△DCE/S△ABC=9/[2(6+x)]=3/7,∴6(6+x)=6
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
因为de是垂直平分线,所以ad等于dc,ae等于ce等于5,因为abd等于13.所以ab加bd加dc也等于13,再加上ae加ce也就是三角形的周长,为23.解决这道题的关键是了解垂直平分线的性质,首先
在三角形ABC中,若DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点再问:判断逆命题的真假,并说出理由再答:再问:你图画错了我要理由再答:以BC为底作一个三角形GBC,做DF=BC取DF
证明:在FD的延长线上取点G,使FD=GD,连接BG、EG∵D是BC的中点,∴BD=CD,∵FD=GD,∠FDC=∠BDG∴△FDC≌△BDG(SAS)∴BG=CF,∵在△BGE中BE+BG>EG,∴
延长FD到H,使DH=DF,连接HB.DEF全等DEH,DHB全等DFC所以ED=EF,BH=CF因为BE+BH>ED所以BE+CF>EF
如图,在三角形ABC中,BD:DC=1:3,三角形DCE的面积是三角形ABC面积的3/7,如果DE=6厘米,那么AE是多少厘米?三角形ADC的面积是三角形ABC面积的3/4三角形DCE的面积是三角形A
证明:∵DE∥BC,∴∠AED=∠C,∵EF∥AB,∴∠A=∠CEF,∵E为AC中点,∴AE=CE,在ΔADE与ΔEFC中:∠A=∠CEF,AE=CE,∠AED=∠C,∴ΔADE≌ΔEFC(SAS).
逆命题为:在三角形ABC中,若D,E是三角形ABC的AB,AC边上的点,DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点.此为假命题因为D,E是三角形ABC的AB,AC边上的点,DE等于
因为DE为AC的垂直平分线所以AD=DC所以AE=EC=3所以AC=3+3=6cm因为三角形ABD的周长为13所以AB+BD+AD=13又因为AD=DC所以AB+BD+DC=13因为AC=6所以三角形
证明(1)因为BD垂直于DE于D,CE垂直DE于E,所以三角形ABD和三角形CAE都是直角三角形.又因为AB=AC,AD=CE.所以直角三角形ABD全等于直角三角形CAE(H,L)所以角DAB=角AC
本题考查的重点知识——等底同高的两个三角形面积相等!∵点D是BC边的中点∴S(⊿ABD)=S(⊿ABC)/2=2∵点E是AD边的中点∴S(⊿ABE)=S(⊿ABD)/2=1(平方厘米)再问:另一题。如