在扇形oab中角aob等于110
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:59:40
连接OD,由折叠的性质可得OB=BD,∵OB=OD(都为半径),∴OB=OD=BD,∴△OBD为等边三角形,∴∠DBO=60°,∴∠CBO=∠CBD=12∠OBD=30°(折叠的性质),在Rt△OBC
(1)证:O、C、A在一条直线上,在△BOC中,∠COB=∠AOB=90°,M为斜边BC的中点,则必有:BC=2OM;又已知OA=OB,OC=OD,∠AOB=∠COD=90°,故△AOD≌△BOC,从
连接圆心和弧上面的一点形成OE,设角EOB为a.S=R^2[sinacosa-(√3/3)sin^2a]=R^2(1/2sin2a+√3/6cos2a-√3/6)=R^2[√3/3(sin2a+b)-
圆心角的弧度数=弧长/半径,因此角AOB=12/8=1.5弧度.填:1.5.而扇形的面积=1/2*弧长*半径=1/2*12*8=48cm^2.
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长
(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)
设AO、BO、弧度和圆的切点为E,F,G连接内切圆心C和E,F,连接OG则,CE垂直于AO,CF垂直于BO在直角三角形OFC中,角FOC=FCO=45度扇形半径R=2L/π在三角形OCF中,OC=根2
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l
设一边为X另一边为Y面积S=XY连接O与圆狐上的一点.在这个三角形里面一个角150度三边分别是XYR用余弦定理R^2=X^2+Y^2-2XYcos150'化简就是√3XY=R^2-(X^2+Y^2)≤
扇形AOB的面积=πR²*45°/360°=25π/8设正方形边长=X,CD=DE=EF=X,OD=CD=X连接OF,OF=5OF²=OE²+EF²5²
R=AB/2=4,半圆面积S=8兀,扇形AOB面积-三角形AOB面积=4兀-8,所以阴影部分面积=半圆面积-(扇形AOB面积-三角形AOB面积)=8兀-(4兀-8)=4兀8
连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD
周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90
周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90
∵OC=4,点C在AB上,CD⊥OA,∴DC=OC2-OD2=16-OD2∴S△OCD=12OD•16-OD2∴S△OCD2=14OD2•(16-OD2)=-14OD4+4OD2=-14(OD2-8)
连结AB∵∠AOB=120°,AO=BO∴容易求得S△AOB=4根号3∵点C是OB中点,∴S△AOC=S△ACB=1/2S△AOB=2根号3又S扇形OAB=8π∴阴影部分面积=S扇形OAB-S△AOC
过点A作OB的垂线,交BO的延长线于点E∵∠AOB=120°∴∠AOD=60°∵OA=4∴OE=2,AE=2√3∴S△AOC=1/2*2*2√3=2√3∵S扇形OAB=1/3*π*4²=(1