在数列an中,a1=1,a2=5,an 2=an n 1,则通项an=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:18:17
a(n+1)=3an/(an+3)a2=(3*1/2)/(1/2+3)=(3/2)/(7/2)=3/7a3=(3*3/7)/(3/7+3)=(9/7)/(24/7)=9/24=3/8a4=(3*3/8
枚举出a1、a2、a3、a4所有可能:0,1,0,10,1,0,-10,-1,2,10,-1,2,-10,-1,-2,30,-1,-2,-3所以最大是2故选C.
a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a
Sn=(an+1/an)s1=a1=(a1+1/a1)/2==>a1=1/a1==>a1=1(由于an>0所以a1=-1不合题意)s2=a1+a2=(a2+1/a2)/2==>2a1+a2=1/a2将
an+2=an+1-ana3=a2-a1=43a4=a3-a2=43-56=-13a5=a4-a3=-13-43=-56
Sn=2^n-1,a1=2^1-1=1S(n-1)=2^(n-1)-1an=Sn-S(n-1)=2^n(1-1/2)=2^(n-1),n≥2当n=1时,a1=1,满足∴an=2^(n-1)an^2=2
A1=1,A2=6,A3=5,A4=-1,A5=-6,A6=-5A_n+6=A_n6位一循环因为2010÷6=335,没有余数所以A2010=A6=-5
当n=2时(a1+a2)/2=(2*2-1)*a2得a2=1/15当n=3时(a1+a2+a3)/3=(2*3-1)*a3得a3=1/35当n=4时(a1+a2+a3+a4)/4=(2*4-1)*a4
(1)∵在数列{a[n]}中,na[n+1]=2(a[1]+a[2]+a[3]+...+a[n])(n∈N*)∴na[n+1]=2S[n]∵a[1]=1∴1a[2]=2S[1]=2a[1],得:a[2
1)自己算2)可以猜,也可算出a1+a2+.+an=(2n-1)nana1+a2+.+a(n+1)=(2n+1)(n+1)a(n+1)a(n+1)=(2n+1)(n+1)a(n+1)-(2n-1)na
我来试试吧...(1)由题,nan+1=2Sn,a1=1a2=2S1=2a1=2a3=1/2*2S2=S2=a1+a2=3a4=1/3*2S3=2/3[a1+a2+a3]=4(2)nan+1=n(Sn
1.设公差为d由等差中项性质得a1+a2+a3=3a2=12a2=4|a2-a5|=|a2-(a2+3d)|=|3d|=6|d|=2d=2或d=-2d=2时,an=a1+(n-1)d=a2+(n-2)
a(n+6)=an,就说明an的数值是不断周期性的重复的,重复的间隔就是6,从第i项ai开始,往后数6项,即第i+6项就和第i项的数字相等了.既然是6个一循环.那么100中有多少个6,就是经历了多少个
a3=3a4=-1a5=-4a6=-3a7=1a8=46个一循环,而2010是6的倍数,则a2010=-3
首先,利用a1=-20,an+1-an=4,求出an=4n-24,再讨论n值((1,6),(6,)再问:讨论n的奇偶吗?还是啥啊再答:讨论an的正负。
Sn-a1=48,Sn-an=36,Sn-a1-a2-an-1-an=21,∴2Sn-(a1+an)=84Sn-(a1+an)-(a2+an-1)=21∴2Sn-2Sn/n=84Sn-4Sn/n=21
a1+a2+a3+a4..an=Sn=2^n-1an=Sn-S(n-1)=2^n-1-2^(n-1)-1=2^(n-1)(n>1)当n=1时,a1=2^1-1=1,符合公式通向公式an=2^(n-1)
Sn=a1+a2+...+an=2^n-11.n=1时,a1=S1=2-1=12.n>=2时,an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1),a1=1符合故an=2^(n-1)数列是
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
分情况所有正项用前n项和所有负项先用前n项和加再取相反数之后再加就算出结果了为480