在无穷级数中从n=0开始求和到n=1开始求和变化的是怎么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:50:28
在无穷级数中从n=0开始求和到n=1开始求和变化的是怎么
(求和符号n=1到正无穷)x^n/(n^2+n)利用逐项求导或逐项求积法,求该级数在收敛区间内的和函数

∑x^n/(n^2+n)=1/x∑(1,+∞)x^(n+1)/(n²+n)收敛区间[-1,1]【∑(1,+∞)x^(n+1)/(n²+n)】''=【∑(1,+∞)x^n/n】'=∑

判定级数2^n^2/n!从n=1到无穷大求和的收敛性

对于n充分大,2^(n^2)=(2^n)^n>=n^n>n!,所以不收敛

n从1到无穷,n^2/n!级数求和

经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:

无穷级数的求和问题无穷级数的求和函数∑(=1,∞)n*x^(n+1),

现在回答还有分吗?再问:有啊再答:

级数求和问题:求:∑1/(1+n^2)(n从1到正无穷)

答案是[pi(e^(2pi)+1)/(e^(2pi)-1)-1]/2利用x*cotx-1=\sum2x^2/(x^2-n^2pi^2)即可,取x=i*pi如果你不知道上面那个公式怎么来的就比较麻烦了,

几个级数求和问题 1.n(n+1)/2^n (n从1到正无穷) 2.2^n/3^n(2n-1) (n从1到正无穷)

1.82.√(2/3)ln(√2+√3)3.-5/27再问:第二第三求详解……再答:2.记s(x)=∑(n从1到正无穷)2^n*x^(2n-1)/(3^n(2n-1)),所以s'(x)=∑(n从1到正

{[(-1)^(n+1)]/n}*sin(nx),n=1,2,3….求n从0到正无穷求和 matlab的code

结果肯定为0,先建立符号变量,然后用积分函数intmatlab代码:symsnx;int((-1)^(n+1)/n*sin(n*x),x,-pi,pi)

判别下列级数的敛散性,请说明是绝对收敛还是条件收敛 求和(n=1到无穷)(-1)^(n-1)*n!/n^n

因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

高数 幕级数求和的题∑1÷[(n^2-1)*2^n]从2到正无穷

考虑级数∑x^n/(n^2-1)在x=1/2时的取值设级数和函数为s(x),利用幂级数的求导和积分性质计算,对xs(x)求导得:∑x^n/(n-1)记为t(x),在对t(x)/x求导即可求和,然后用积

n从0到正无穷 n的阶乘分之一求和 的值是多少

1/0!+1/1!+1/2!+1/3!+…+1/n!+...=e,即自然对数的底.

求幂级数的和函数 S(x)= (x-1)^n/[n2^n] (n从1到无穷,求和)

 补充一下x=-1也是收敛的,故应该是[-1,3)再问:你确定么,我怎么算的是ln[3/(3-x)]呢我最后积分限是0到x-1,你的是1到x-1?再答:确定,你那个错了,比如把x=1带入应该

级数求和求证级数从n=1到无穷大(2n+1)/2^n=10

再问:不好意思,题目抄错了,是n(n+2)/2^n=10再答:下面的这种算法好像简单一些还有一种方法

常数项级数求和 比如n从一到无穷,n除以2的n次方,化成幂级数nx^n 然后X带1/2,求和,幂级数还要讨论收敛

要的,因为要看1/2在不在收敛域里面,如果不在就不能带.再问:今天的竞赛有一条常数项级数求和10分,要拆成2个做,我都化成幂级数了,然后求和,忘记讨论收敛域和收敛半径,如果答案对,会拿多少分啊。再答:

无穷级数求和1/(2n)!,从n=1到无穷

令s(x)=Σ1/(2n!)x^2n=1/2!x²+1/4!x^4+1/6!x^6+.s'(x)=1/1!x+1/3!x³+1/5!x^5+.s''(x)=

1/(n ln(n+1))(n=1到无穷求和) 这个级数是收敛的还是发散的,怎么证明

答:柯西积分判别法:若f(x)x>0是非负的不增函数,则级数∑[n从1到正无穷]f(n)与积分∫[1到正无穷]f(x)dx同时收敛或同时发散.记f(x)=1/(xln(x+1)),满足f(x)x>0是

一道级数的证明题求证级数1/n2^n=ln2(等式前有一个求和符号,并从1到无穷)

为了求出级数的级数和,我们从幂级数S(x)=∑x^n/n(n从1到+∞,|x|<1)着手进行计算,显然S(1/2)=∑1/n2^n.对S(x)进行求导运算得S'(x)=∑x^n(n从0到+∞,|x|<

求级数收敛性问题级数 为An=Ln(1+1/n)的求和,n是1到正无穷 ,判断这个级数的收敛性

因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散

无穷级数求和 1/(2n-1)^2 其中n从1到正无穷,求它们的和,已知无穷级数1/n^2(n从1到无穷)和为π^2/6

已知∑{1≤k}1/k²=π²/6.故∑{1≤k}1/(2k)²=1/4·∑{1≤k}1/k²=π²/24.而由∑{1≤n}1/n²=∑{1