在正方形ABCD中,做等边三角形ABE,连接DE并延长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:21:58
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
∵PD⊥平面ABCD∴PD⊥BC∵BC⊥CD∴BC⊥平面PDC∴平面PBC⊥平面PDC作FG⊥PC于G则FG是F到平面PDE的距离△PFG∽△PEF∽△PBCBC=2,PC=2√2,PE=√2PB=2
第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,
设ABCD边长1,则圆直径也为1,那么EFGH对角线为1,根据等边直角三角行三边长比1:1:根号2,则EFGH边长为2/根号2,ABCD面积为1,EFGH面积为1/2,作比,则EFGH面积是ABCD面
将4个点连起来就行了,每个点到顶点的距离为根号2.
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
(1)因为SA垂直平面则AD垂直于SA.因为ABCD是正方形则AD垂直于AB所以AD垂直于平面SAB则AD垂直于SB(2)由(1)知AD垂直于平面SAB即BC垂直于平面SAB所以角BSC为直线SC与平
证明:连接B1D1和BD因为B1D1垂直于A1C1且DD1还垂直于A1C1,所以面D1DB1垂直于A1C1又因为B1D在面B1DD1内故A1C1垂直于B1D同理连接B1C可得面B1CD垂直于BC1又因
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
EG=DGEF=CGEG+EF=正方形边长aABCD周长=4a=16a=4SOEFCG周长=2a=8
图中有证明角的证明利用周角和平行四边形的对角相等邻角互补的特性
1、连接CD,延长DC交AB于P,不难证明PD是∠ADB的垂直平分线,所以∠CDA=30°所以AD⊥CE且平分CE,所以AC=AE=12、根据勾股定理,CP=PC=AP=√2/2因PD⊥PB,直角三角
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG