在正方形ABCD中,点E为BC的中点,连接AE,过点B作BF垂直于AE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:11:54
在正方形ABCD中,点E为BC的中点,连接AE,过点B作BF垂直于AE
在边长为4的正方形ABCD中,E为对角线BD上一动点,F为边BC的中点.

1.因为正方形ABCD,所以三角形ABD与BCD全等,所以AE=CE2.若△CEF是等腰三角形,则CE=EF,所以过E的垂线EG为CF的中垂线,垂足为G即G为CF中点,又因为F为BC中点,所以BG=B

已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC与点F,

第一问;你先画个图因为三角形ABE相似于三角形FCE且相似比为1比2(因为BE等于2CE)所以可以知道CF等于6

如图,在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上.

(1)y=-1/2x²+x(2)①若∠AEF=90°,∵△AEF∽△ECF,∴∠FAE=∠FEC=∠EAB,∴△ECF∽△ABE,∴AE/EC=EF/CF,EF/CF=AE/BE,∴AE/E

在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上

1、当角AFE=90度时,三角形ECF相似于三角形EFA,并且,相似于三角形FDA所以,此时CF=1/2,CE=1/4同理,当角AFE=90度时,CF=1/4,CE=1/2当点F在DC的延长线上时,三

正方形ABCD,点E为BC中点,点F在CD上

解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三

如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.

,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

如图所示在正方形abcd中,点f在cd上,ae平分∠baf,e为bc的中点,求证;af=be+df

证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点  AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A

如图,在正方形ABCD中,E为BC上的一点,AF平分角DAE交CD于点F,求AE=BE+DF

∵ABCD是正方形,∴AD=AB,∠D=∠B=90°,AB∥CD,∴∠AFD=∠BAF,将ΔADF绕点A旋转90°到ΔABG,则DF=BG,∠G=∠AFD=∠BAF=∠BAE+∠EAF,∵AF平分∠E

在正方形ABCD中,AP=13,P点在BC上,E点在AB上,F点在CD上.点A 和点P是关于EF为对称轴的对称点,求EF

过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13

在正方形ABCD中,E,F分别是BC和DC上的点,且

将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得

在正方形ABCD中,F为DC中点,E为BC上1点,且EC=4分之1BC,证AF垂直EF

连接AE设正方形的边长为4∵EC=4分之1BC∴EC=1BE=3∵F为DC中点∴DF=FC=2利用勾股定理EF=更号5∵AB=4BE=3利用勾股定理∴AE=5同理:∵AB=2DF=2∴AF=2更号5通

如图,在正方形梯形ABCD中,AD平行BC,E为CD的中点,EF平行AB交BC于点F.求证BF=AD+CF

过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G

在正方形ABCD中,点E为DC的中点,F是BC上的一点,且CF=1/4BC.求证:AE平分角DAF.

不用相似用勾股定理也是可以的.只是麻烦些.过E做AF的垂线,再由垂线段和ED相等,则是到角的两边距离行等的点在角平分线上.垂线的距离可由三角形AEF面积求出.

如图在正方形abcd中,点e,f分别为dc,bc边上的动点,满足角eaf=45度,求证EF=DE+BF

这个题目辅助线不是画在中间,你看它右上角那个三角形,把它补在图形左边,也就是AB移动到AD的位置,这样可以求证三角形AEF和(那两个小三角形拼成的三角形)全等,边角边

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A