在正方形abcd内作∠eaf=45°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:24:03
证明:延长CD到M,使DM=BF,连结AM∵在△ABF与△AMD中AB=AD,∠ABF=∠AMD=90°,BF=DM∴△ABF≌△AMD∴AF=AM,∠BAF=∠DAM,∠AFB=∠AMD∠EAM=∠
延长CB于点G,取GB=DF∵正方形ABCD∴AB=AD,∠ABC=∠ADC=∠BAD=90∴∠ABG=90∵GB=DF∴△ABG全等于△ADF∴AG=AF,∠GAB=∠FAD∵∠EAF=45∴∠BA
证明:作AG⊥EF于G,将△ADF旋转至△ABF',(见图)显然△ADF≌△ABF',∵∠EAF=45,∴∠BAE+∠DAF=45∴∠F'AE=∠EAF=45,又AF=AF'AE公共边∴△AEF≌△A
证明:将△ADF绕点A旋转,使AD与AB重合,旋转后点F的对应点为G∵正方形ABCD∴∠BAD=90∵△ADF绕点A旋转至△ABG∴△ABG≌△ADF∴AG=AF,∠BAG=∠DAF∵∠EAF=45∴
图都错了再答:咋告诉你呀再问:哪里错再答:题说点E在CD上,但图画得是在BC上再答:发之前请看清楚题目再答:行吧你可能有近视没看清楚再问:点B和点D的位置反了再问:请解答再问:在吗再答:.再答:等十分
延长EB到G 使BG=DF 连AG由 AD=AB ∠ABG=∠ADF△ABG≌△ADF得到 ∠GAB=∠FAD AG
设边长为X,则DF=x-3,CE=x-2,AE=√(x^2+4),AF=√[x^2+(x-3)^2],EF=√[9+(x-2)^2].因为∠EAF=45°,所以根据余弦定理,COS∠EAF=(AE^2
⑴ 把⊿ABE绕A逆时针旋转90º,到达⊿ADG, FG=FD+BE=FE AE=AG AF=AF&n
这个题算典型了把△ADE顺时针旋转90°,旋转到△ABG∵AG=AE,∠FAG=∠FAE=45°,AF=AF∴△FAG≌△FAE(SAS)∴∠AFG=∠AFE又∠ABF=∠APF=90°,AF=AF∴
如图,从正方形ABCD的顶点A,作∠EAF等于45°,交DC于点F,BC于点E,过点A作AP垂直于EF于P,求证:EF=DF+BE 证明:将△ABE绕点A逆时针旋转90度至△ADG,则△AB
证明,在延长CB的延长线上取点M,使BM=DF,连接AMAB=AD,∠ABM=∠ADF=90°,故,△ABM≌△ADF因此,AF=AM,∠BAM=∠DAF,又,∠EAF=45°,∠BAD=90°,故,
证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E
证明:在CD的延长线上取点G,使DG=BE,连接AG∵正方形ABCD∴AB=AD,∠BAD=∠ABC=∠ADG=90∵DG=BE∴△ABE≌△ADG(SAS)∴AG=AE,∠DAG=∠BAE∵∠EAF
EF=BF+DE延长CB至G,使BG=DE,连接AG.∵ABCD是正方形.∴AB=AD,∠ABG=∠ABC=∠ADC=90°∴⊿ABG≌⊿ADE∴∠BAG=∠DAE,AG=AE∴∠BAG+∠BAF=∠
如图,延长CB至G,使BG=DF∵AB=AD,∠ABG=∠D=90°∴△ABG≌△ADF∴∠BAG=∠DAF,AF=AG∵∠EAF=45°∴∠GAE=∠BAG+∠BAE &nbs
证明:如图,把△ADF绕点A顺时针旋转90°得到△ABG,AG=AF,GB=DF,∠BAG=∠DAF,∵∠EAF=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-
证明:延长EB至I,使得BI=DF.联结AI.那么,在⊿ABI和⊿ADF中,IE=DF,∠IBA=∠FDA,BA=DA,所以⊿ABI≌⊿ADF.故AI=AF,∠DAF=∠BAI;由此易知∠IAE=45
延长CD至M.使DM=BE,∵AB=AD,∠ABE=∠ADM=90º,BE=DM∴△ABE≌△ADM∴AE=AM∴∠BAE=∠DAM,∵∠EAF=45º∴∠BAE+∠FAD=45&
将三角形AFD旋转到正方形外
延长CB至点G,使BG=DF∵AB=AD,BG=DF,∠GBA=∠FDA=90∴△ABG和△ADF全等,∠GAB=∠FAD,AG=AF∵∠EAF=45,∠BAD=90∴∠GAE=90-∠EAF=45∵