在矩形ABCD中 点EF分别在BC CD上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:01:01
连接BC'和A'B;在△CBC'中,EF是BC和C'C上的中位线,所以EF//BC'①;在△BA'C'中,A'B、A'C'、BC'均是正方形的对角线,所以△BA'C'是等边△,所以∠BC'A'=60°
四边形MENF为菱形 ∵M,N为AD与BC中点∴BM=CM 又∵E,F为BM与CM中点∴EN=EM(直角三角形斜边中线长度等于斜边的一半) ∴EN=EM=FM=FN ∴四边形MENF为菱形
连结BD交EF于O,EF∥AC,AC⊥BD,EF⊥BDBB1⊥ABCD,BB1⊥EFEF⊥BB1O∠BOB1为AC交BD于P,BO/BP=1/2BP=√2*a/2BOtg∠B0B1=BB1/BO=a/
共有六对互相垂直的棱,由作法直接得到三对:(PA,PE),(PE,PF),(PF,PA).进而,由于:PA垂直于平面PEF,PE垂直于平面PAF,PF垂直于平面PAE,(垂直于平面上的两相交直线,就垂
∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.
因为E,F分别是PC,PD的中点,所以EF//CD,又ABCD为矩形,AB//CD,所以EF//AB,根据“如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.”所以EF‖平面P
[4-(3*3/4)]/2=7/8过A,C作EF的平行线
∵∠BFE=90°∴∠AFB+∠DFE=90°∵∠AFB+∠ABF=90°∴∠ABF=∠DFE∵∠A=∠D∴∠AFB=∠FED∴△ABF∽△DFE∴BF/EF=AF/DE即(√6^2+2^2)/EF=
1、角ced+角bef=90°,角bef+角bfe=90°,角b=角c,ef=ed2、所以三角形bfe全等于三角形ced3、所以be=cd4、因为cd=ba5、所以be=ba6、所以三角形abe是等腰
∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等边三角形,故(3)正确;
分别做个CD、EF边的平行线,然后利用直角三角形的中线定理即可,我只随便想了一下,没画图,你自己画吧,很简单,按照我的步骤,解法绝对没问题,这道题主要考察中线定理以及利用辅助线将直线平移寻找等价途径解
先画好图下底的正方形为ABCD上底对应A'B'C'D'取DC中点G连接FGEG先求证平面FGE∥平面BB'D'D∵FG∥DD'EG∥BD(中位线定理)FG∩EG=GFG和EG在平面FGE上所以平面FG
题有问题,BM=AB?如是BN=AB延长MN交BC于G(提示一下,详细过程自己补充)三角形ABM,NBM,NBC全等角ABM=角MBN=角NBC=90/3度=30度
因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形
∵ABCD为矩形∴OE=OF且OB=OC又∵角EOB=角FOC∴△EOB全等于△FOC∴EB=FC在△AOD中,E、F为OA、OD中点∴EF‖AD∵AD‖BC∴EF‖BC
证明:∵E是OA的中点,F是OD的中点∴EF是△AOD的中位线∴EF//AD∵四边形ABCD是矩形∴AD//BC∴EF//BC
1、∵ABCD是矩形∴OA=OD=OB=OCAD∥BC∵E、F分别是OA、OD中点∴EF是△AOD中位线∴EF∥AD∴EF∥BC2、∵∠BOE=∠COF(对顶角相等)OB=-OC,OE=OF=1/2O
证明:连接A'C'∵ABCD-A'B'C'D是长方体∴AA'//CC',AA'=CC'∴四边形ACC'A'是平行
点M,N在何处?2,证明:因为三角形ABC的中线BD,CE交于点O所以D,E分别是AC,AB的中点因为F,G分别是OB,OC的中点所以DE,FG分别是三角形ABC和三角形OBC的中位线所以DE平行BC
延长DE与AB交于G点.因为E是中点,所以GB=ABAH/HF=AG/DF=4AH=4HFAH=4/5*AF=4/5*(AD+DF)=4/5(b+a/2)=2a/5+4b/5