在矩形abcd中,已知ad=4,ab=10,按如图所示的方式折叠

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:44:38
在矩形abcd中,已知ad=4,ab=10,按如图所示的方式折叠
已知矩形ABCD中,AB=4,AD=6,在长方形ABCD内任意一点取P,使∠APB>π/2的概率是

以AB为直径向矩形内作半圆.∠APB>π/2当且仅当P落在半圆外的点.所以所求概率为:(4*6-Pi*2^2/2)/(4*6)=1-pi/12

如图,在矩形ABCD中,对角线AC,BD交于点O,AD=4cm.角AOD=60°,求矩形ABCD的面积

由于矩形的对角线相等且互相平分,故OA=OD,而角AOD=60°,所以三角形AOD为等边三角形,得角ADO=60°,所以在直角三角形ABD中,角ABD=30°,得AB=AD*根号3=4倍根号3,于是得

如图所示,在矩形ABCD中,对角线AC,BD交于点O,AD=4厘米,∠AOD=60°,求矩形ABCD的面积.

由于矩形对角线互相平分,所以三角形AOD是顶角为60度的等腰三角形,即正三角形.直角三角形ADC中,角DAO=60度,所以角ACD=30度.AC=8,BC=四倍的根号三.一乘就可以.

在矩形ABCD中,AB=4,AD=7.现将该矩形ABCD内随机投一点P,求角APB>90 °是的概率

4π/28=π/7以AB为直径的半圆面积与矩形面积之比

如图,矩形纸片ABCD中,已知AB=5,AD=4,四边形MNEF是在矩形纸片ABCD中剪裁出的一个正方形MNEF.

(1)如图,过点E作PQ垂直于AB,分别交AB、CD于点P、Q,∵∠QFE+∠QEF=∠NEP+∠QEF=90°∴QFE=∠NEP在△EPN和△EQF中,∠FQE=∠EPN∠QFE=∠PENEF=NE

如图6,已知在矩形ABCD中,AB=4,BC=3,将矩形ABCD翻折,使AD与对角线BD重合,求AE的长

折痕为DE,对吗?BD=√(AB^2+AD^2)=5,∵AD=DA‘=3,∴A’B=2,在RTΔA‘BE中,设AE=A’E=X,则BE=4-X,根据勾股定理得:(4-X)^2=X^2+48X=12X=

已知:如图矩形ABCD中,AB=2,BC=4,E、F在BC、AD上,且四边形AECF是菱形.求菱形AECF的面积

设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2

已知矩形ABCD中,AB=5,AD=7,在矩形内任取一点P,事件A,“角APB>90°”的概率P(A)为

以AB为直径在矩形ABCD内作半圆.显然,当点P落在半圆内时,就有∠APB>90°.∵S(矩形ABCD)=AB×AD=5×7=35、S(半圆)=(AB/2)^2π=(5/2)^2π=(25/4)π,∴

已知在四棱柱P-ABCD中,底面ABCD是矩形,AD=2,AB=1,PA垂直平面ABCD,

(1)AF垂直FD,A为P在平面ABCD投影,则PF垂直FD(2)取DA、DP,AP的中点,分别为O、M、G,易证得四边形MGBF为矩形,则EG//平面PFD,(3)过O作ON垂直PD,交PD于N,角

如图,已知矩形ABCD中,E是AD上一点,EF⊥EC,EF=EC,DE=4,矩形ABCD的周长是32,求AE

过E作EG⊥BC交BC于G.∵ABCD是矩形,∴∠A=∠D=90°,∴∠AFE+∠AEF=90°.······①∵EF⊥EC,∴∠DEC+∠AEF=90°.······②比较①、②,得:∠AFE=∠D

已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB

⑴作FM⊥CD于M,可证△AEH≌△DHG≌△MGF,∴AE=DH=6-2=4,DG=AH=2,∴△FCG的面积=1/2×6×2=6.⑵可证△AEH∽△DHG,∴DG/AH=DH/AE,∴DG=8/x

已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB

(1)作FM⊥CD于M,可证△AEH≌△DHG≌△MGF,∴AE=DH=6-2=4,DG=AH=2,∴△FCG的面积=12×6×2=6;(2)可证△AEH∽△DHG,∴DGAH=DHAE,即DG2=4

已知矩形ABCD中,AB=5,AD=7,在矩形内任取一点P,事件A,“角APB》90°”的概率P(A)为好多

∵直径的圆周角=90°,以AB为直径在矩形内画半圆,当P在圆弧上时,∠APB=90°,当P在半圆内时,∠APB>90°,当P在半圆外时,∠APB<90°∴P(A)=1/2*π(AB/2)²/

如图,在矩形ABCD中,E、F分别在AD、BC边上,矩形ABCD∽矩形FCDE的面积的3倍,AB=4,求矩形ABCD的面

因为矩形ABCD∽矩形FCDE且面积比为3所以边的比为根3因为AD比AB=根3所以AD=4根3所以ABCD面积为12根3

如图,在矩形ABCD中,DE⊥AC于E,已知cos∠ADE=3/5,AB=4,求AD的长.

∵DE⊥AC,∴∠AED=∠ADC又∠EAD=∠DAC,∴∠ADE=∠ACD∴△ADE∽△ACD(AAA)∴∠ADE=∠ACD∵cos∠ADE=3/5,∴cos∠ACD=3/5据勾股定理,有sin∠A

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF

S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,

答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C

矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,

S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8