在矩形ABCD中,点E是CD上一点,BF⊥AE,垂足为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:49:25
在矩形ABCD中,点E是CD上一点,BF⊥AE,垂足为
如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=B

连接OB以为AO=OC所以OB为直角三角形ABC上斜边的中线所以OB=AC/2=AO=OC(直角三角形上斜边的中线等于斜边的一半)所以∠OAB=∠OBA=∠BEF/2(等角对等边)又因为BE=BF所以

如图,在矩形ABCD中,E.F分别是边AB CD上的点,AE=CF,连接EF BF与对角线AC交于点O

连接BO;因为AE=CF,∠BAC=∠ACD,∠AEO=∠CFO;所以,△AOE全等于△COF;EO=OF;又因为BF=BE;所以,BO垂直于EF;因为∠BEF=2∠BAC=∠BAC+∠AOE;所以,

在矩形ABCD中,AB=3,BC=4,点E,F,G,H分别是线段AB,BC,CD,DA上的点,分别以EF,GH所在直线为

(1)∵AM=CN,AB=CD,∠BAM=∠DCN,∴△ABM≌△CDN,∴AM=DN,∠ABM=∠CDN;AM∥DN;四边形BNDM有两对边平行且相等,所以其为平行四边形;(2)∵AM=CN,∴AN

如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分

延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=

如图,在矩形ABCD中,点E、F分别在边AB、CD上,BF//DE若AD =12CM,

因为ABCD为矩形,所以AD平行且等于BC,AB平行且等于DC,因为AB=7cm且AE:EB=5:2,所以AE=5cm,EB=2cm,因为ED平行于BF,所以EBFD为平行四边形,即EB=DF=2cm

如图,在矩形ABCD中,AB=2√2,AD=1,点P在AC上,PQ垂直与BP交CD于Q,PE垂直CD交CD于E点P从A点

看题目应该是高中的问题,思路:求三角形PQE的面积需要知道底和高,因为三角形PQE是直角三角形,所以只要知道两直角边就行,求PE的长度我们可以利用三角形PEC与三角形CAD相似,关键是EQ的长度更难求

如图,在矩形ABCD中,AB = 4,BC = 3,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF⊥AE,

(1)∵ABCD为矩形,AF⊥AE,AB⊥CF∴AE^2=AD^2+DE^2=9+x^2AF^2=AB^2+BF^2=16+y^2∵AE^2+AF^2=EF^2=CE^2+CF^2∴9+x^2+16+

我需要多种方法.如图,矩形ABCD中,E、F分别是AB、CD上的点,求证:EF

1代换法,因BD=AC,EBFD构成平行四边行…2反证法假设EF长由定理长方行中对交线最长即假设不成立原正确3三角形法平移EF到B交H三角形BDH中角BHD为钝角,又大角对大边,即证4园归法,取AC中

如图,在矩形ABCD中,AB=11cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分

延长A′E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选B.

已知在平行四边形ABCD中,点E,F分别是AB,CD的中点,且AF=DE,求证:平行四边形ABCD是矩形.

证明:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E,F分别是AB,CD的中点,∴AE=12AB,DF=12CD,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵A

如图,在矩形ABCD中,E是BC上的点,F是CD上的点,已知S△ADF=S△ABE=1/3 S矩形ABCD,求S△AEF

因为S△ADF=S△ABE=1/3S矩形ABCD,所以1/3ABBC=1/2ABBE所以1/3BC=1/2BE所以BC/BE=3/2所以BE=2/3BC同理1/3ABBC=1/2ADDF因为AB=AD

如图,在矩形ABCD中,AB=8,AD=6,点E,F在BC,CD边上,BF=4,DE=5,P是线段EF上一动点,过点P作

(1)延长NP交BC于G点设GE=Y则FC=8-5=3CE=6-4=2PG=8-XGE=Y直角三角形PGE与直角三角形FCE相似PG/FC=GE/CE则(8-X)/3=Y/2求得Y=2(8-X)/3从

在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.

您确定题目没有问题吗?第一问就很奇怪呀!因为E是CD上一动点,故设:DE为x.则:tanEAB=tanAED=AD/DE=3/x,这不是一个定值呀!还有,假设FG是圆O的切线成立,则:OF⊥FG,又因

如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.

(1)如图1,证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H

在矩形ABCD中,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.

(1)证明:在矩形ABCD中,∠A=∠FDM=90°.又∵AM=DM,∠AME=∠DMF,∴△AME≌△DMF .  ∴ME=MF.如图,过点G作GH⊥AD于点H.∴四边

关于矩形的题,如图,在矩形ABCD中,点E、F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将

连接CC′∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处∴EC=EC′∴∠EC′C=∠ECC′∵∠DC′C=∠ECC′∴∠EC′C=∠D

如图,已知在四边形ABCD中,点E是CD上的一点,连接AE、

解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE

在矩形abcd中,点e是cd上一点,ab=ae,bf⊥ae,垂足为f,求证bf=bc

连接BE,则∠AEB=∠EBA,因为∠AEB+∠EBF=90°,并且∠EBA+∠EBC=90°,又BF⊥AE,BC⊥DC,所以△BFE全等于△BCE,因此BF=BC