在矩形ABCD中,点E是CD上一点,BF⊥AE,垂足为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:49:25
连接OB以为AO=OC所以OB为直角三角形ABC上斜边的中线所以OB=AC/2=AO=OC(直角三角形上斜边的中线等于斜边的一半)所以∠OAB=∠OBA=∠BEF/2(等角对等边)又因为BE=BF所以
连接BO;因为AE=CF,∠BAC=∠ACD,∠AEO=∠CFO;所以,△AOE全等于△COF;EO=OF;又因为BF=BE;所以,BO垂直于EF;因为∠BEF=2∠BAC=∠BAC+∠AOE;所以,
(1)∵AM=CN,AB=CD,∠BAM=∠DCN,∴△ABM≌△CDN,∴AM=DN,∠ABM=∠CDN;AM∥DN;四边形BNDM有两对边平行且相等,所以其为平行四边形;(2)∵AM=CN,∴AN
延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=
因为ABCD为矩形,所以AD平行且等于BC,AB平行且等于DC,因为AB=7cm且AE:EB=5:2,所以AE=5cm,EB=2cm,因为ED平行于BF,所以EBFD为平行四边形,即EB=DF=2cm
看题目应该是高中的问题,思路:求三角形PQE的面积需要知道底和高,因为三角形PQE是直角三角形,所以只要知道两直角边就行,求PE的长度我们可以利用三角形PEC与三角形CAD相似,关键是EQ的长度更难求
(1)∵ABCD为矩形,AF⊥AE,AB⊥CF∴AE^2=AD^2+DE^2=9+x^2AF^2=AB^2+BF^2=16+y^2∵AE^2+AF^2=EF^2=CE^2+CF^2∴9+x^2+16+
1代换法,因BD=AC,EBFD构成平行四边行…2反证法假设EF长由定理长方行中对交线最长即假设不成立原正确3三角形法平移EF到B交H三角形BDH中角BHD为钝角,又大角对大边,即证4园归法,取AC中
延长A′E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选B.
证明:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E,F分别是AB,CD的中点,∴AE=12AB,DF=12CD,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵A
因为S△ADF=S△ABE=1/3S矩形ABCD,所以1/3ABBC=1/2ABBE所以1/3BC=1/2BE所以BC/BE=3/2所以BE=2/3BC同理1/3ABBC=1/2ADDF因为AB=AD
(1)延长NP交BC于G点设GE=Y则FC=8-5=3CE=6-4=2PG=8-XGE=Y直角三角形PGE与直角三角形FCE相似PG/FC=GE/CE则(8-X)/3=Y/2求得Y=2(8-X)/3从
您确定题目没有问题吗?第一问就很奇怪呀!因为E是CD上一动点,故设:DE为x.则:tanEAB=tanAED=AD/DE=3/x,这不是一个定值呀!还有,假设FG是圆O的切线成立,则:OF⊥FG,又因
(1)如图1,证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H
(1)证明:在矩形ABCD中,∠A=∠FDM=90°.又∵AM=DM,∠AME=∠DMF,∴△AME≌△DMF . ∴ME=MF.如图,过点G作GH⊥AD于点H.∴四边
连接CC′∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处∴EC=EC′∴∠EC′C=∠ECC′∵∠DC′C=∠ECC′∴∠EC′C=∠D
解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE
连接BE,则∠AEB=∠EBA,因为∠AEB+∠EBF=90°,并且∠EBA+∠EBC=90°,又BF⊥AE,BC⊥DC,所以△BFE全等于△BCE,因此BF=BC