在等腰直角三角形abc中,o为斜边ac的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:15:42
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
问题不全.而且没图
证明PE=DO因为,∠B=90度,AB=BC,所以三角形ABC为等腰直角三角形,又O是AC上的中点,所以BO垂直AC,∠C=∠CBO=45°由已知PB=PD可知△BPA为等腰三角形,∠PDB=∠PBD
(1)P在AO上(如图1):∵在等腰直角三角形ABC中,O是斜边AC的中点∴BO⊥AC∵DE⊥AC∴∠POB=∠DEP=90°∵PB=PD∴∠PBD=∠PDB,∵∠OBC=∠C=45°,∴∠OBP+∠
∵AB是圆的切线,∴OD⊥AB,即∠BDO=90°,又∵△ABC是等腰直角三角形,∴∠B=45°,∴∠BOD=45°,∴∠MND=12∠BOD=22.5°.故答案是:22.5.
连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=12AC=2;∵∠DOB=45°,∴∠MND
连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=12AC=2;∵∠DOB=45°,∴∠MND
R:r=根号2+1
(1)证明:∠PDB=∠PBD=45°+∠PBO=45°+∠DPC(∠PDB外角)∴∠PBO=∠DPC.又∵BP=DP∴Rt△BOP≌Rt△PDE∴BO=PE;(2)PE=AO=BO=OC=a,AP=
因为BA等于EACA等于FA角BAC等于角EAF所以直三角形BAC全等于直角三角形EAF因为AD垂直BC所以三角形ADC相似于三角形EAF所以角AEM等于角DAC又因为角EAM等于角DAC所以角MAE
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
求什么再问:我发错了,,,,没什么
你确定是AO=x,而不是AP=x?如果AP=x的话,第一问你已经会做,即证三角形PDE全等于三角形BPO,便得到对应三边相等;第二问如果设AP=x时,则有y=四边形PBDE的面积=三角形ABC的面积—
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
如答图所示.∵以AC的中点O为旋转中心,把这个三角形旋转180°,点B旋转至B′处,∴OB=OB′,∵AC=BC=2cm,∴OC=1cm.在Rt△BOC中,OB=BC2+OC2=22+12=5(cm)
图传的慢,稍候再问:..........再答:已传再问:在哪再答:百度传图很慢,需要等几分钟再问:你不会耍我吧,我真的急啊再答:不会的,谁那么缺德啊?
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD