在等腰直角三角形ABC中,已知一条直线边AC所在直线的方程为2x-y=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:00:37
过A点分别做AG垂直BE,垂足为G,AH垂直FC,垂足为H.因为MD垂直BC,AG垂直BE,所以可以得到AGBD为矩形,AHDC为矩形.又因为三角形ABE,ACF为等腰直角三角形,所以角ABD=角AC
好麻烦的.取AB、AC的中点D、E连接MD、DP、NE、EP.得三角形MDP和三角形NEP,证明它们全等.因为D、P、E是各边中点,所以PE、PD是中位线.所以PD平行且等于1/2AC,PE平行且等于
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
因为CF垂直于BF,AE垂直于CF所以∠CFB等于∠AED等于90度又因为∠ADE等于∠BDF所以∠EAD等于∠DBF因为三角形ABC是等腰直角三角形所以∠CAB等于∠CBA等于45度,AC等于BC因
证:EF^2=AE^2+BF^2延长ED至G,使DG=DE,连接GF,GB因为DG=DE,DE垂直DF所以GF=EF因为BD=DA,DG=DE,角BDG=角ADE所以三角形BDG全等于三角形ADE所以
三角形ABC和ECF都是等腰直角三角形,则CA=CB,CE=CF,角ACE=角BCF根据边角边可以得出三角形ACE与BCF全等,所以AE=BF
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:延长AM到F,使MF=AM,连接BF,CF(如图)∵BM=CM,AM=FM,∴四边形ABFC为平行四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠D
解题思路:用锐角三角函数、勾股定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu
证明:过点AD垂直平面α且与平面交于D点,连接ED,角AED就是AE与平面α所成角.由三角形ABC等腰直角三角形,BC=10,E是BC的中点,知AE=5,又知A到α的距离为4,知AD=4,所以sinA
1'点N在AB上.因为AB=8,BC=6,所以AM=5.根据三角形中线性质可知点N平分AB.即AN=4.得到三角形BMN的高为3,面积为3BN(中线长度我不会求,初三的学过了么?)2'点N在AC上.若
可以做再答:延长ef交ac于h连接gh.由于acb等腰直角efb等腰直角所以eb垂直bc又因为ef垂直ebac垂直bc所以ehcb是矩形由于eh垂直ac(矩形),角cab是45度,所以ahf是等腰直角
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
他这是合并同类项(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^Asin(A-B)+sin^Bsin(A-B)=sin^Asin(A+B)-sin^Bsi
连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13
证明:因为∠ACB=90度,所以∠ACE+∠BCF=90度因为AE⊥CD所以∠ACE+∠CAE=90度所以∠CAE=∠BCF又因为AC=BC,∠CEA=∠CFB=90度所以△ACE≌△BCF(AAS)
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD