在边长1的正方形abcd中 角ebf等于45度 求三角形def的周长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:01:27
在边长1的正方形abcd中 角ebf等于45度 求三角形def的周长
在边长为1的正方形ABCD中,E,F分别是BC,DC的中点,则向量AE·AF=

正方形ABCD边长为1设以A为原点,AD为x轴,AB为y轴的直角坐标系E(1/2,1)F(1,1/2)向量AE乘AF=1*1/2+1/2*1=1再答:O(��_��)O~

如图,在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上.

(1)y=-1/2x²+x(2)①若∠AEF=90°,∵△AEF∽△ECF,∴∠FAE=∠FEC=∠EAB,∴△ECF∽△ABE,∴AE/EC=EF/CF,EF/CF=AE/BE,∴AE/E

在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上

1、当角AFE=90度时,三角形ECF相似于三角形EFA,并且,相似于三角形FDA所以,此时CF=1/2,CE=1/4同理,当角AFE=90度时,CF=1/4,CE=1/2当点F在DC的延长线上时,三

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点

证明:1)∵PD⊥面ABCDAD属于面ABCD∴PD⊥AD又ABCD为正方形∴AD⊥CD∵CDPD属于面PCD∴AD⊥面PCD∴AD⊥PC2)连接BD交AC于F,连接EF因ABCD为正方形所以F为BD

在边长为1的正方形ABCD中,E,F分别是AB,AD上的点,且AE+EF+FA=2求∠ECF的度数?

延长EB到点G,使BG=DF,连接CG∵AE+EF+FA=2,正方形边长是1∴EF=2-AE-AF=(1-AE)+(1-AF)=BE+DF=EG易证△BCG≌△DCF可得CG=CF,∠BCG=∠DCF

在边长为1的正方形ABCD中,E、F分别是AB、AD上的点,且AE+EF+FA=2,求角ECF的度数

如图.⊿CDF绕C逆时针旋转90°,到达⊿CBG.EF=2-(AF+AE)=FD+EB=BG+EB=EG,CG=CF,CE=CE.∴⊿CEF≌⊿CEG(SSS)∠ECF=∠ECG,而∠∠ECF+∠EC

已知:如图,正方形ABCD中,E ,F分别在AB,AD上,正方形ABCD边长为1,ΔAEF的周长是2.求∠ECF的度数

 延长AB至G点,使BG=DF.易知三角形CBG和CFD全等.又因为AE+AF+EF=2,而:AE+AF+DF+EB=2比较上下两式,所以:EF=DF+EB因为DF=BG(刚已证全等)所以E

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

正方形ABCD的边长为1,E在CD上,F在射线AD上,DF为x

(2)个人感觉有点问题,DF的长为(0,1](3)DF=1/3,因为,△BEG为等腰△,只存在一种情况的,即BE=EG,画出图,根据相似三角形就可以求出的,

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

已知边长为1的正方形ABCD中,点E,F分别在边BC,CD上1如图1,若AE⊥BF

顺时针旋转ADF90度至ABF'(AD与AB重合),连接EF,易证EF=EF',勾股定理易求BE=1/2设DF=xEF^2=EF'^2=(1/2+x)^2=(1-1/2)^2+(1-x)^2x=1/3

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

正方形ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中点,在正方形EFGH绕着点E旋转的过程中(1)观察两

(1)重叠部分的面积是保持不变的(2)在你画的第一个图上连接DE,在第二个图上连接CE,把阴影部分分成两个三角形,通过计算两个三角形的面积和可知两个图中的阴影部分的面积相等,都等于正方形ABCD面积1

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形

1)ADE,CEF,AEF,AA1D,D1EC1,B1C1F都是边长等于1:2的三个直角三角形2)AF=√(16+9)=5AE=√20=AD1+D1E=√5×A1D1+D1C1×(2÷√5)A1D1=