如右图,ab为圆o的直径,d是弧bc的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:01:55
连接oD因为:OA=OC,所以:角OAC=OCA又oA=oD,所以:角oAD=oDA角OAC=oAD,所以:角OCA=oDA即:oD//OC又:DE垂直OC,所以:角EDo=90即DE是圆o的切线.
证明;连接OD∵OA=OD∴∠OAD=∠ODA∵AD//PO∴∠OAD=∠BOP【同位角】∠ODA=∠DOP【内错角】∴∠BOP=∠DOP又∵OB=OD,OP=Op∴⊿BOP≌⊿DOP(SAS)∴∠P
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
链接OE,OE为半径,OD为半径的一半,所以三角形OED中,角OED为30度,DOE为60度,所以AOE为30度,得出结论~~~~~
依题意得到BC=8作CD交AB于E易得2*角CAB=角COB那么设∠CAB=θ那么∠COB=2θ易得sin2θ=2sinθcosθ=24/25∵∠DCB=∠DOB/2=45那么sin∠COD=sin(
图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点
证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷
连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一
已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角
三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=