如右图,⊙O与△ABC各边分别切于点D,E,F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:17:31
如右图,⊙O与△ABC各边分别切于点D,E,F
直线与圆:如图,已知CD是△ABC的边AB上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证

证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=

如图,△ABC是等边三角形,⊙O过点B、C,且与BA、CA的延长线分别交于点D、E.弦DF//AC,交⊙O于点F,EF

1、因为DF//AC,所以角DFE=角CEF,因为角DFE=角EBD,角CEF=角CBF,所以角DBE=角CBF角EBF=角EBD+角DBF=角CBF+角DBF=角ABC=60度又因为角EFB=角EC

如图在△ABC中,角C=90°,AC=9,BC=12.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别

连接OE因为EF=AF所以角A=角AEF因为BD是圆O的直径所以角BED=90度因为角BED+角AED=180度所以角AED=90度因为角ACB=90度所以角ACB=角BED=90度所以A,C,D,E

⊙O与△ABC的三边BC、CA、AB分别交于点A1、A2、B1、B2、C1、C2,过上述六点分别作所在边的垂线a1、a2

∵a1、a2关于圆心O成中心对称,∴a1a2.同理,b1b2,c1c2.∴a1、b2、c1的公共点D在变换R(O,180°)下的像D’也是像a2、b1、c2的公共点,即a2、b1、c2三线也相交于一点

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.

(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO

已知Rt△ABC中,∠C=90°,O为斜边AB上的一点,以O为圆心的圆与边AC,BC分别相切于点E,F,若AC=1,BC

方法一:如图,连接OE,OF,设圆的半径为R,∴OE=OF=R,∵以O为圆心的圆与边AC,BC分别相切于点E,F,∴四边形CEOF是正方形,∴OF∥AC,∴△OBF∽△ABC,∴OF:AC=FB:BC

如图,在△ABC中,分别以AB,AC为边作等边三角形ABE,ACD,BD与CE相交与点O

1、 还要添加条件 AB=BC;是的;∵△ABE和△ACD都是等边三角形,∴∠BAE=∠CAD=60°∴∠EAC=∠BAD=∠BAC+60°又∵AB=AE,  

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E

1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*

如图,在△ABC中,分别以AB,AC为边向外作等边三角形ABE,ACD,BD与CE相交于点O

(1)EC=BD证明:因为△ABE和△ACD均为等边三角形,且角EAB=角CAD=60°所以AD=AC,AB=AE.角EAC=角BAD=60°+角BAC,所以△EAC和△BAD全等,所以EC=BD(2

如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若⊙O的

连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF

如图所示,在△ABC中,AB=AC,内切圆○O与边BC、AC、AB、分别相切于D、E、F

1,连接OE、OF、AO.因为AB、AC切圆O于F、E,所以OF⊥AB,OE⊥AC.E、F在圆O上,所以OF=OE.在直角三角形AFO和AEO中,AF=根号(AO^2-OF^2),AE=根号(AO^2

在△ABC中,∠C=90°,内切圆O与边BC,CA,AB分别相切于点D,E,F,且AB=c,AC=b,BC=a,圆O的半

连接OF、OE、OD,易知OECD为正方形  因此,CE=CD=r  于是,AF=AE=b-r  进一步推知,BF=c-(b-r)=c-b+r  又因为BD=a-rBD=BF  所以a-r=c-b+r

例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交

解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.

连接OE,∵AB、AC为切线,∴OD⊥AB,OE⊥AC,又∠A=90°,∴四边形ADOE是矩形,又OD=OE,∴四边形ADOE是正方形.∴半径OD=OE=AD=3,∵∠C=∠BOD,而tan∠BOD=

如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.

(1)证明:∵△ABD和△ACE都是等边三角形,∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,∴∠BAC+∠CAE=∠BAC+∠BAD,即∠BAE=∠DAC.在△ABE和△

如图,等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、

(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3