如图 a p b c是圆o上的四个点,角apc=角cpb=60度,ap,cb

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 21:48:42
如图 a p b c是圆o上的四个点,角apc=角cpb=60度,ap,cb
如图,A,P,B,C是圆O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论.

等腰三角形请采纳答案,支持我一下.再问:过程过程啊!!!过程呢???

如图,A,P,B,C,是圆O上的四个点,角APC=角CPB=60°.判断△ABC的形状,并证明你的结论.

△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是弧BC所对的圆周角,∠ABC与∠APC是弧AC所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.

(1)证明:∵AB=BC,∴AB=BC,(2分)∴∠BDC=∠ADB,∴DB平分∠ADC;(4分)(2)由(1)可知AB=BC,∴∠BAC=∠ADB,又∵∠ABE=∠ABD,∴△ABE∽△DBA,(6

如图,矩形ABCD的四个顶点都在圆O上,已知圆O的半径是4,求矩形的最大面积

设X,Y分别为矩形两边长,则x2+y2=64,设矩形面积z=xy,则下面图片,x2为x的平方,其他后面的2都是平方,丫丫的.公式太恶心人了,答案是32,你自己做吧..这点应该会吧..

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

如图,A,B,C,D是⊙O上的四个点,点A是BC的中点,AD交BC于点E,AE=4,AB=6,

(1)证明:∵点A是BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ADB;(2)∵△ABE∽△ADB,∴ABAE=ADAB,即6

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图,已知A,BC,D是圆O上的四个点,AB=BC,BD交AC与点E,连接CD,AD,求证DB平分∠ADC

证明:因为AB=BC,所以弧AB=弧BC.所以<ADB=<CDB所以DB平分<ADc

如图,A,B,C,D分别是圆O上的四个点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长

∵AB=AC∴∠ABC=∠C∵∠C=∠D∴∠ABC=∠D∵∠BAE=∠DAB∴△ABE∽△ADB∴AB/AD=AE/AB∴AB²=AE*AD∵AE=2,AD=2+4=6∴AB²=1

如图A,B,P,C是⊙O上的四个点,∠APC=∠CPB=60°,过点a做⊙O切线交bp延长线于d

(1)证明:作⊙O的直径AE,连接PE,∵AE是⊙O的直径,AD是⊙O的切线,∴∠DAE=∠APE=90°,∴∠PAD+∠PAE=∠PAE+∠E=90°,∴∠PAD=∠E,∵∠PBA=∠E,∴∠PAD

如图,A,P,B,C是圆O上的四个点,角APC=角CPB=60°,判断三角形ABC的形状,并证明

等边三角形再答:采纳吗再答:证法要吗再答: 

如图,A,B,C,D是圆O上的四个点,且角BCD=100度,求角BOD(弧BCD所对的圆心角)和角BAD的度数

因为弧bad所对圆周角为100°弧bad所对的圆心角为200°所以弧bcd所对圆心角为160°圆周角为80°定理:同弧所对圆周角等于圆心角一半

如图,A,B,C,D是圆O上的四个点,且角BCD=100°,求角BOD(弧BCD所对的圆心角)和LBAD的大小?

圆周角是圆心角的一半所以∠BOD=2∠BCD所以大角∠BOD=200度由于圆周角为360度,所以小角∠BOD=160度所以∠BAD=80你还可以用另一种方法解

如图,A,B,C,D是圆O上的四个点,且角BCD=100°,求角BOD(弧BCD所对的圆心角)和LBAD的大小

圆周角是圆心角的一半所以∠BOD=2∠BCD所以大角∠BOD=200度由于圆周角为360度,所以小角∠BOD=160度所以∠BAD=80

如图,△ABC中,D、E分别是AC,AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO∠DCO②∠BEO=∠O

(1):①∠EBO=∠DCO④OB=OC(2)证明:∵OB=OC∴∠OBC=∠OCB∵∠EBO=∠DCO∵∠OBC+∠EBO=∠OCB+∠DCO∴∠EBC=∠DCB∴△ABC是等腰三角形再问:第2问选