如图 ab是圆o的直径 点p在ba的延长线上,弦CD垂直于AB,垂足为E,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:18:21
过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O
当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).
(1)∵直径AB⊥CD于E,∴弧BD=弧BC=1/2弧CD,又∵∠BOD=弧BD,∠DFC=1/2弧CD,∴∠DFC=∠DOB(2)连结OC,∵弧BC=1/2弧CD,∴∠BOC=∠CFD,又∵∠OMC
(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA
第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA
先自己画个图,标准点,再看题目
储备知识:韦达定理:对于关于x的方程ax²+bx+c=0,x1,x2是其两根则有x1+x2=-b/a,x1•x1=c/a连接OC∵AD、BD是关于x的方程x^2-(4m+2)x+
【我想,此题应该不只一问吧,第二问是不是求矩形PQRS的面积呢?】【图在上传中请稍等】1)∵CD是⊙O切线,切点为D∴OD⊥CD(圆的切线垂直于过切点的半径)∴Rt△COD中,∠CDO=90°∴CO&
作o点到AC的垂线OM,因为OA=5,OM=4,所以AM=3(勾股),推出AC=6,要使APC等腰,即让AC=AP,则AP=6.当p移动4秒即4CM后,AP=AC=6,等腰.
(1)过点O作OD垂直AC于点D,连结BC,则角ADO=角ACB=90度,OD=4cm所以OD//BC,所以OD/BC=AO/AB=1/2所以BC=8cm因为AC^+BC^2=AB^2AB=10cm所
额.其实你都看到答案了,只要在进一步一点点就好了连结OP因为OC=OP所以角OCP=角OPC因为∠OCD的平分线交⊙O于P所以角DCP=角OCP所以角DCP=角OPC所以无论何时,CD平行OP又因为o
∵CD⊥ODDF⊥AB与点E∴∠CDO=∠DEC=90∵在三角形CDE和三角形CDO中∠CDO=∠DEC=90∠DCE=∠DCO∴△CDE∽△CDO∴∠CDE=∠DOC∵∠DOC=∠ODB+∠OBD又
∠ABD=30°---∠OBD=30°---∠ODB=30°,∠ADB=90°∠BAD=60°-----∠ACD=∠ADC=30°------∠ODC=∠ADC+∠ADO=90°又OD是圆O半径,所以
(2)OC/PC=OD/PE(2r)/(3r+R)=r/Rr/R=1/3
简单说说吧标角比较麻烦,就用1234了1=23=41+4=2+3ACB=90所以OCP=90再问:还有一题您看看再答:先悬赏撒,辛辛苦苦不容易的再问:等等会的诺cA等于cp,pB等于一求Bc的弧长再答
∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO