如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:21:27
如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O半径的根号3倍.
当点Q从A向B运动的过程中,Sdoe是否发生变化?若发生变话,说明理由;若不发生变化,请求面积
Sdeo即为阴影部分面积!
在20min内答出者,再加50分!
当点Q从A向B运动的过程中,Sdoe是否发生变化?若发生变话,说明理由;若不发生变化,请求面积
Sdeo即为阴影部分面积!
在20min内答出者,再加50分!
当Q从A向B运动的过程中,图中阴影部分的面积不发生变化
连结0D、OE.
∵DE‖CB,∴S△QDE=S△ODE(同底等高)
∴S阴影=S扇形ODE
设圆的半径为r,由切割线定理,CD²=CA•CB=CA•(CA+AB)
即(√3r)²=1×(1+2r),解得r=1
又CD=√3r,∴∠COD=60°
∵DE‖CB,∴∠ODE=60°
∴△ODE是等边三角形
∴S阴影=π/6
连结0D、OE.
∵DE‖CB,∴S△QDE=S△ODE(同底等高)
∴S阴影=S扇形ODE
设圆的半径为r,由切割线定理,CD²=CA•CB=CA•(CA+AB)
即(√3r)²=1×(1+2r),解得r=1
又CD=√3r,∴∠COD=60°
∵DE‖CB,∴∠ODE=60°
∴△ODE是等边三角形
∴S阴影=π/6
如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O
如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根
如图,AB是圆O的直径,点C在BA延长线上,CD切圆O于点D,CA=1,CD是圆O半径的根号3倍.
如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°. 1)求证:CD是圆O的切线.
如图AB是圆O的直径,C是BA延长线上的一点,CD与圆O相切于点D连接OD,四边形PQRS是矩形,其中点PQ在半径OA上
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.
如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于点D,CA=1,CD是⊙O半径的 3倍. (1)求⊙O的半径
如图,AB为圆O的直径,C为AB延长线上一点,CD是圆O的切,切点为D,DE垂直AB于点E,求证角一等于角二.
如图AB是圆O的直径,弦CD垂直AB于点H,G是圆O上一点,E点在CD的延长线上,连结EG交AB的延长线于F,KE=GE
AB是圆O的直径,点P是AB延长线上的一点,PC切圆O于点C,在射线PA上截取PD=PC,连接CD并延长交与圆O于点E
如图,AB是圆O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切圆O于点D,连接CD交AB于点E 求证:P