如图 be垂直ac于e,CF⊥AB于F,BE.CF相交于点d,,若bd=cd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:45:27
证明:如图,连接DE、DF∵BE⊥AC∴△BCE为直角三角形∵D为BC的中点∴DE=1/2BC(直角三角形斜边上的中线等于斜边的一半)同理,DF=1/2BC∴DE=DF即△DEF为等腰三角形∵H为EF
∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF
图在最下方,手画的不好,见谅!倍长ED到P,连结CP,FP因为D为BC中点所以BD=DC因为BD=CD角BDE=角CDPDE=PD所以三角形BDE全等于三角形CDP所以DE=CP=2角B+角ACB=9
辅助线连接BD,CD∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF∵DG⊥BC,BG=CG∴DG垂直平分BC∴DC=DB在RT⊿BED,RT⊿CFD中∵DC=DB,DE=DF∴RT⊿BED≌R
如图所示:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF(角平分线上的点到线段两端点的距离相等) BD=CD(在同圆中,相等的圆周角所对的弦相等)∴Rt△
在Rt△AFC与Rt△AEB中∠A=∠A∠AEB=∠AFC所以,Rt△AFC∽Rt△AEBAF:AC=AE:AB即AF:AE=AC:AB且∠A=∠A所以,△AFE∽△ACB∠AEF=∠ABC
连接AD、BD∵AC⊥CD∴∠ACD=90°∴AD是圆O的直径(半圆上的圆周角=90°)∴∠BDA=90°即BD⊥AB∵CF⊥AB∴BD∥CF∵E点是CD的中点∴BE=EF(平行线等分线段定理的推论)
你确定字母没错吗?好吧,按我理解的来,是的,因为AB=AC,所以△ABC为等腰三角形,又因为∠A=60°,所以△ABC为等边三角形,因为BE垂直于AC,CF垂直于AB,等边三角形三线合一,所以E,F分
在矩形ABCD中,AC=BD且BO=1/2BD,CO=1/2AC∴BO=CO∵BE⊥AC于E,CF⊥BD于F∴∠OEB=∠OFC=90°在△OEB与△OFC中,∠OEB=∠OFC∠EOB=∠FOC(对
AB=ACBAD=DAC△ADE,△ADFBAD=CADAD=ADAED=AFD△ADE全等,△ADFAF=AEBE=CF
在直角△BCE与直角△BCF中,D为BC中点则ED=BD=DC=DF得△DEF为等边三角形还可得∠EDB=2∠DCE,∠BDF=2∠DCF因为∠EDF=∠EDB+∠BDF=2(∠DCE+∠DCF)=2
因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形
已知,点D是△ABC的外接圆的弧BC的中点,可得:AD平分∠BAC;所以,DE=DF.(角平分线上的点到角两边的距离相等)(图中估计是:E在AB延长线上,F在AC上,反过来的话方法也一样)已知,A、B
CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC
∵∠A=60,AB=AC∴三角形ABC为等边三角形∴∠ABC=60,∠BAC=60°,∠ACB=60°∵BE垂直于AC∴AE=CE(三线合一)同理AF=BF∵BD=CE∴△FBD,△EDC,△AFE为
证明:∵AD平分∠ABC,BE⊥AC,CF⊥A∴OE=OF(角平分线性质),∠BFC=∠CEB=90∵∠BOF=∠COE∴△BOF≌△COE(ASA)∴BF=CE或∵AD平分∠ABC∴∠BAO=∠CA
证;AD平分∠BAC∵BD=CD,CF⊥ABBE⊥AC∴△BFD全等△DEC(HL)∴FD=DE∵CF⊥ABBE⊥AC∴∠AFD=∠DEA又DF=DEAD为公共边∴△AFD全等△AED(ASS)∴∠F
证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A
证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠
因为角BDF等于角CDE(对顶角相等),角Bfd等于角Ced,cd=Bd.所以三角形bfd全等于三角形ced、所以fd=ed,所以AD为角BAC的角平分线(到角两边距离相等的点在角平分线上)再答:改一