如图 p是圆o外一点 pa pb分别交圆o于c d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:17:12
如图 p是圆o外一点 pa pb分别交圆o于c d
如图,p为圆O外一点,直线op交圆o与点b,c.过点p作圆o的切线

PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,已知ab是圆o的直径,p为圆o外一点,P为圆O外一点,且OP平行BC,角P=角BAC

设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC

如图,⊙O的半径为5cm,P是⊙O外一点,OP=8cm,以P为圆心作一个圆与⊙O外切,这个圆的半径是

(1)外切圆半径3cm,内切圆半径13cm.(2)⊙B的半径的比较6cm或10cm.

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

已知:如图,P是圆O外一点,PA、PB分别切圆O于A、B,连OP,交圆O于C,连AC、BC,D是优弧AB上一点,∠ADC

连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R

如图,P是圆O外一点,求作:过点P作圆O的切线

连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了

如图,从圆O外一点P出发的两条射线分别交圆O于A、B、C、D,已知AB=CD 求证:(1)PO平分角BPD(2)PA=P

过点O作OE⊥AB于点E,OF⊥CD于点F∵弦AB=CD∴OE=OF,∠PEO=∠PFO=90°∵OP=OP∴RT△POE≌RT△POF(HL)∴∠BPO=∠DPO,PE=PF∴PO平分∠BPD2.连

如图,圆O是△ABC的外接圆,过A,B两点分别作⊙O的切线PA,PB交于一点P,连接OP

连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,PA,PB分别切圆O于点A,B,角P等于58度,C是圆O上一点,求角C

连接OA、OB∵PA、PB分别切⊙O于点A、B,∴OA⊥PA、OB⊥PB,∵∠P=58°,∴∠AOB=122°,∴∠C=61°.

如图,在圆o的直径上取一点p,以p为圆心,以ap为半径作圆p,过a点的两直线分别与圆o,圆p交于c

我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs

如图,点p是圆o外一点,过点p作圆o的切线,切点为4,连接po并延长,交圆o 于B,C两点.

证明:∵PA作⊙O的切线,切点为A,∴∠PAB=∠C,又∵∠P=∠P,∴△PBA∽△PAC请点击下面的【选为满意回答】按钮.

如图,P是圆O外一点,PAB,PCD分别与圆O相交于A,B,C,D①PO平分∠BPD②AB=CD③OE⊥CD,OF⊥AB

命题1,条件③④结论①②,若OE⊥CD,OF⊥AB;OE=OF,根据角平分线的性质可知PO平分∠BPD;AB=CD;命题2,条件②③结论①④.若AB=CD;OE⊥CD,OF⊥AB;根据垂径定理可知OE