如图 以bc为直径的圆o分别交三角形ABC的边ab,AC于d,e两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:15:33
(1)因为三角形ABC为等腰三角形,AB为直径所以∠ADB为90°即D为BC中点所以∠CAD=∠BAD所以弧BD=弧DF(2)DE为圆O的切线则∠EDO=90°即CDE+∠ADE=90°因为∠ADE+
连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA
1、证明:因为AD⊥BC所以∠ACB+∠CDA=90因为AD是直径所以∠AFD=90°所以∠ADF+∠CDA=90°所以∠ACB=∠ADF因为∠ADF=∠AEF(对同弧AF)所以∠AEF=∠ACB2、
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
(1)、设AB中点为O,连接OD、OE∵AB是⊙O直径,D、E在⊙O上∴OB=OE=OD=OA∴∠OEB=∠B=∠C,∠OAD=∠ODA∴∠BOE=∠BAC,∠BOD=∠OAD+∠ODA=2∠BAC∴
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴
1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE
因为BC为圆o的直径,所以
ABC为等腰三角形所以:角A=角B而:AOD,BOD均为等腰三角形所以:角EOB=(180度-角B)/2=(180度-角A)/2=角AOD而:AO=BO,DO=EO所以:三角形AOD全等于三角形BOE
2)AD=DC=AO=2=BC/2DF=CD*sinC=√33)CF=EF=1/2CD=1S三角形DEF=1/2*DF*EF=√3/2
联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=
(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴
三角形ODE的形状是等边三角形CE=2圆中,0A=0D=0E=OB∠OAD=∠ODA,∠OEB=∠OBE根据四边形内角和∠ODC+∠OEC+∠C+∠DOE=360°180-∠ODA+180-∠OEB+
O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,