如图 以bc为直径的圆o分别交三角形ABC的边ab,AC于d,e两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:15:33
如图 以bc为直径的圆o分别交三角形ABC的边ab,AC于d,e两点
如图,以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D ,

(1)因为三角形ABC为等腰三角形,AB为直径所以∠ADB为90°即D为BC中点所以∠CAD=∠BAD所以弧BD=弧DF(2)DE为圆O的切线则∠EDO=90°即CDE+∠ADE=90°因为∠ADE+

如图,以三角形ABC的边BC为直径作圆O分别交AB,AC于点F点E(急 急)!

连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,

如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM

证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA

如图,△ABC中,AD⊥BC,以AD为直径的圆O交AB于E,交AC于F.

1、证明:因为AD⊥BC所以∠ACB+∠CDA=90因为AD是直径所以∠AFD=90°所以∠ADF+∠CDA=90°所以∠ACB=∠ADF因为∠ADF=∠AEF(对同弧AF)所以∠AEF=∠ACB2、

如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD

已知:如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC,AC于点D,E,连结EB,交OD于点F,OD垂直

(1)、设AB中点为O,连接OD、OE∵AB是⊙O直径,D、E在⊙O上∴OB=OE=OD=OA∴∠OEB=∠B=∠C,∠OAD=∠ODA∴∠BOE=∠BAC,∠BOD=∠OAD+∠ODA=2∠BAC∴

如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于D、E,

﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中

已知:如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于点D、E,连结EB交O

(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴

如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC

1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE

如图,O为等腰三角形ABC的底边AB的中点,以AB为直径的半圆分别交AC, BC于点E,

ABC为等腰三角形所以:角A=角B而:AOD,BOD均为等腰三角形所以:角EOB=(180度-角B)/2=(180度-角A)/2=角AOD而:AO=BO,DO=EO所以:三角形AOD全等于三角形BOE

如图,等腰△ABC,AB=AC,以AB为直径作圆O分别交AC,BC于D,E两点,过B点的切线交OE的延长线于点F,连结F

联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E

如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.

(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D

已知如图在ABC中AB=AC以AB为直径的圆O分别交BC、AC于点D、E.

1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=

如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC,AC于点D,连接EB交OD于点F.

(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴

如图,在三角形ABC中,角C=60度,以AB为直径的半圆O分别交AC、BC于点D、E

三角形ODE的形状是等边三角形CE=2圆中,0A=0D=0E=OB∠OAD=∠ODA,∠OEB=∠OBE根据四边形内角和∠ODC+∠OEC+∠C+∠DOE=360°180-∠ODA+180-∠OEB+

如图,在三角形ABC中,∠C=60,以AB为直径的半圆O分别与AC边,BC边交于点D,E

O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,