如图 圆o是以原点为圆心,根号2位半径的圆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:54:18
注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形
圆的方程是(x-根号2)^2+(y-根号2)^2=1设直线OA方程是y=kx.当直线OA与圆相切时,向量OA.OB的夹角有最大和最小值.相切时,圆心到直线的距离=半径1即:|k*根号2-根号2|/根号
如图,在平面直角坐标系中,O为(1)略;(2)P(1,1)或(0,2)或
1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正
(2)设M(x0,y0),P'(3,y1),Q'(3,y2),易知,P(-1,0),Q(1,0).由M在圆上有:x0^2+y0^2=1,由P、M、P'三点共线,y1/4=y0/(x0+1),所以,y1
由L:y=-x-根号2得A(-根号2,0)C(0,-根号2)又∵AO=CO∠AOC=90°∴△AOC为等腰直角三角形∴∠CAO=45°
1)点A的坐标可以通过令直线方程y=x-2^(1/2)中的y=0,来求得:为(2^(1/2),0);∠CAO的度数可从直线斜率来求得为45度,2)当圆B与圆O相切时,两圆的中心距为两圆半径之和,即2^
如图,设∠COB=α,OB=2/cosα.OA=2/sinα.AB=OA×OB/OC=4/[2sinαcosα]=4/sin2α.当α=45°时,AB有最小值4.
由x^2-y^2=2得y^2=x^2-2>=0,∴x^2>=2,而您却认为x^2>=0,您错在这里.再问:能问个问题么:椭圆通径=2b²/a,里面a是指x²下面的数,还是焦点在哪个
(1)需证明直线AB和OC的斜率相乘为-1.直线AB斜率为-1,直线oc:y=x,斜率为1,所以相乘为-1,所以两直线垂直.(2)P在AB上,设P(X,-X+2),A(2,0)PA=根号[(X-2)^
B的坐标为(2,0)或(-1,根号3)
1.O到直线距离d=1/√2=√2/2R²=(√10/2)²-(√2/2)²=2x²+y²=22.x+y-5/x-2=1+(y-3)/(x-2)=1+
当A、D两点重合时,PO=PD-OD=5-3=2,此时P点坐标为a=-2,当B在弧CD时,由勾股定理得,PO=PB2−OB2=52−32=4,此时P点坐标为a=-4,则实数a的取值范围是-4≤a≤-2
解析,P为函数y=4x/3,设p(t,4t/3)圆O圆P相切,故|OP|=3+2=5√(t²+(4t/3)²)=5,t=3或-3.P点的坐标为(3,4)或(-3,-4).【其实可以
这个……图呢……我自己画了一种情况——【-根号2,+根号2】就是B在x轴上……
(1)设AO=a,BO=b,AB=c则有:a^2+b^2=c^2因为,a^2+b^2≥2ab,即c^2≥2ab有最小值仅当a=b时成立此时,AB=2r=a√2(r为圆O的半径)(2)当P为圆O与y=x
你的短信是C为(0,负跟2),我当这个了.要是(1,--根2)结果又是不正常的数,一般结果很简单的我当作了一个负根2,你看下.圆B半径为1,圆O为根2-1.那么相切时两圆的圆心距为跟2.圆O不动,所以
设点到直线的距离公式为D.\x0d∵圆与直线x-√3y=4相切\x0d∴O到直线的距离为D\x0d∴D=I0-√3*0-4I/√1(-√3)=2\x0d∴圆O标准方程为xy=4\x0d2、依题意:圆O
设P(m,6-m),则OP^2=m^2+(6-m)^2,∴PQ^2=OP^2-OQ^2=2m^2-12m+34=2(m-3)^2+16.∴当m=3时,PQ最小=4.再问:6²不是36吗?34