如图 在三角形abc中,∠a=60度,bd,ce分别平分角adc和角acb

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:00:37
如图 在三角形abc中,∠a=60度,bd,ce分别平分角adc和角acb
如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC的度数是

已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°5x=180°x=36°∴∠C=2x=72°∵BD是AC边上的高∴∠BDC=90°∴∠DBC=90°-72

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

已知:如图,在三角形ABC和三角形DEF中,AB=DE,AC=DF,∠A=∠D,求证:三角ABC全等三角形DEF.

证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)

如图,在三角形ABC中,∠A=150º,AB=3,AC=2,求三角形ABC的面积.

延长CA,作BD垂直于CA交于D点,BD为三角形ABC的高,角A=150°,那么角BAD=180-150=30°,根据直角三角形30°所对应的直角边是斜边一半的知识,得BD=1/2AB=1.5所以S三

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,在三角形ABC中,BD平分∠ABC,且∠A=二分之一∠ABC,∠C=∠CDB,求∠A的度数

∠A+2∠A+2∠A=180,所以∠A=36度再问:能不能详细一点,用因为所以再答:设角ABD=角DBC=x,,因为BD平分∠ABC,且∠A=二分之一∠ABC所以角A=x,角BDC=2x,角C=2x所

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,在三角形ABC中,点D是三角形ABC内的一点,求证:∠CDB=∠A+∠ACD+∠ABD

证明:根据三角形内角和为180°可得:在三角形CBD中,∠CDB=180°-∠DCB-∠CBD在三角形ABC中,∠A+∠ACD+∠DCB+∠CDB+∠ABD=180°∴∠DCB+∠CBD=180°-∠

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在三角形ABC中,∠A≠∠B,求证:BC≠AC

从已知得非等腰三角形.因为等腰三角形2腰相等.两角相等.所以得知BC不等于AC

如图三角形ABC和点D,在图中画出三角形A'B'C',使三角形A'B'C'与三角形ABC关于D点中

回答有采纳不?再问:要采纳,必须画图再答:再答:连接起来,取相等线段再答:采纳,采纳!!再答:说好的采纳呢?别顽皮了,,,,

如图在三角形ABC中

纳尼,上图再答:????

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC