如图 在正方形ABCD中,F是对角线AC上任一点,BF垂直EF.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:25:09
如图 在正方形ABCD中,F是对角线AC上任一点,BF垂直EF.
如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱与底面垂直,E,F分别是AB1,BC1的中点,则以

连B1C,则B1C交BC1于F且F为BC1中点,则三角形B1AC中,EF∥AC,由EF⊄平面ABCD,AC⊂平面ABCD所以EF∥平面ABCD,而B1B⊥面ABCD,所以EF与BB1垂直,故A正确.A

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点,求

(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA

如图,在四棱锥S-ABCD中,底面ABCD是正方形,

第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,且E、F、G分别为DB、AD中点,补充如下

“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图1 在正方形abcd中 e f分别是

看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------

​如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中

只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图,在四棱锥P_ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.求证:DF⊥AP

令PA的中点为E.∵PD⊥平面ABCD,∴AB⊥PD.∵ABCD是正方形,∴AB⊥AD.由AB⊥PD、AB⊥AD、PD∩AD=D,得:AB⊥平面PAD,∴AB⊥PA,又F∈PB且PF=BF,∴PF=A

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.

证明:(1)取AB中点E,连接EF,DE∵E,F分别是AB,PB的中点,∴EF∥AP,∴AP和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;由已知四边形ABCD是正方形,假设PD=DC=a,

如图正方形ABCD中E,F是BC,DC的中点求证AE⊥EF

稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△