如图 已知等边三角形ABC内接于圆O,BD为内接正十二边形的一边,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:14:36
∵AC=BCCD=CE∠BCD=∠ACE=120°∴△BCD∽=△ACE∴∠CBD=∠CAE∵∠CBA+∠BAC=120°∴∠CBA+∠BAC=∠DBA+∠DBC+∠BAC=∠DBA+∠CAE+∠BA
(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,AE=A
AF=BF+CF证明:以C为圆心,CF为半径做圆,交FD于点G(CF=CG)∵△ABC、CDE是等边三角形∴AC=BC,CE=ED,∠ACB=∠DCE=60°∴∠ACB+∠BCE=∠BCE+∠DCE即
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B
1、观察△ACE与△BCD可见到AC=BC,CE=CD,∠ACE=60°+∠BCE=∠BCD,∴△ACE≌△BCD,得∠EAC=∠DBC,记AE与BC的交点为G,在△AGC与△BGF中,∠AGC与∠B
做垂线FI交DE于I设AG长为x,ADE和ABC相似,则DE为2x.因为等边,FI=√3*x,GH=2-x.则√3*x=2-x
由三角形全等得到∠DAC=∠FBC∠AFB=180-(∠ABF+∠FAB)=180-(∠ABC+∠FBC+∠FAB)=180-(60+∠DAC+∠FAB)=180-(60+∠CAB)=180-60-6
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度
分析 由已知可知∠1=30° ∠2=90° 而CD=5√2 ∴2x平方=50 ∴x=5 就是圆o的半径等于5 这样就能
DA=DB+DC典型的取长补短题:延长BD到E,使DE=DC,连结CE,则△DCE是等边三角形再证明△BCE≌△ADC即可得结论也可以在AD上截取DE=DC,得△DCE是等边三角形,再证明△BDC≌△
60°再问:怎么算的?再答:看出来的再问:额......再问:这答案对?再答:肯定对再答:嘿嘿,不要太感谢我哦再问:感谢再问:呵呵再答:祝你好运,考试门门打满分
证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
你是问求PD+PE+PF吗?分别连结PA,PB,PC,分成三个小三角形,其面积和为(AB*PD+BC*PE+AC*PF)/2,AB=BC=AC,面积和=BC*(PD+PE+PF)/2,三角形ABC面积
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-
设边长为X,由此可知三角形DEF的高为2分之根号3X,由DE平行于BC可得,(3倍根号3-2分之根号3X)/3倍根号3=X/6,解得X=3,故三角形DEF的边长为3
三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3