如图 点d是等边三角形abc中bc边上一点,点EF分别是线段

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:57:04
如图 点d是等边三角形abc中bc边上一点,点EF分别是线段
如图一,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.(1)求证:AE//BC

仍平行;∵△ABC∽△EDC,∴∠ACB=∠ECD,AC/EC=BC/DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ABC∽△EDC,∴∠EAC=∠B,又∵∠ACB=∠B,

【如图,已知在等边三角形ABC中,D是BC边上一点...

∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN

如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.

证明:(1)∵△ABC与△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC.又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,∴∠BCD=∠ACE.∴△ACE≌△

三棱锥S-ABC中,底面ABC为等边三角形,D为SC的中点,且有AD=DB=DC=AB,点A、B、C、D是半径为3的球面

AO=3AB=√3*AO′高DO′=√2*AO′△AOO′中3²=AO′²+(√2*AO′-3)²AO′=2√2则正四面体的高DO′=4则三棱锥的高=2DO′=8AB=√

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

如图,Rt△ABC中,∠B=30°,D是AB的中点,求证:△ACD是等边三角形

,△ABC为RT∠B=30°,D是AB的中点所以DC=AC角A=角ADc所以角A=60度=角ADc所以:△ACD是等边三角形

如图,等边三角形ABC中,D是AB边上的动点,以CD为一边向上作等边三角形EDC,连接AE.证明:AE平行BC

∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC

如下图(1),在等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形DCE,连接AE.

1证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC2.∵△AB

等边三角形ABC中 D是AB边上一个动点 以CD为一边 向上作等边三角形EDC 连接AE.

因为三角形ABC为等边三角形所以BC=AC,角BCA=60°又因为三角形DCE为等边三角形所以DC=CE,角DCE=60°所以角BCA=角DCE所以角BCA-DCA=角DCE-DCA即角BCD=ACE

三角形ABC是等边三角形,D,B,C,E在一条直线上,角DAE=120度,已知BD=1,CE=3.求等边三角形的边长

角CAE+角E=60度角D+角E=180度-120度=60度=>角CAE=角D而对于等边三角形有角ABD=角ECA于是三角形ABD相似于ECA=>AB/EC=BD/CA=>BD*EC=3=边长^2=>

在三角形ABC中,若角B=60度,b的平方等于ac,试求证:三角形ABC是等边三角形

cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-b^2=ac因为b^2=ac所以a^2+c^2-ac=aca^2-2ac+c^2=0(a-c)^2=0a=c所以三角形ABC是等边三

三角形ABC是等边三角形 D,B,C,E在一条直线上,角DAE=120度 已知BD=1 CE=3求等边三角形的边长

先证明三角形DBA相似三角形ACE设其边长为x易得1/x=x/3得x=根号3

如图,在等边三角形ABC中,D是BC上一点,以AD为边作等边三角形ADE,连接EC

1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角

如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.

证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD

菱形ABCD中,角BAD等于2角B,求三角形ABC是等边三角形

角BAD+角B=180,角BAD=2角B,得:角B=60,菱形:AB=BC三角形ABC为等边三角形再问:角BAD+角B=180,是怎么来的?再答:两平行直线同位角相等、

三角形ABC中,已知2B=A+C,且sin^2=sinAsinC,证明:△ABC是等边三角形

(sinB)^2=(1-cos2B)/2.sinAsinC=-(1/2)(cos(A+C)-cos(A-C))所以:根据2B=A+C,得到:cos2B=cos(A+C).所以消去这个项,得到:1/2=

△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上,求证△CMN是等边三角形

证明:∵∠BCA=∠DCE=60°,∴∠ACE=180°-60°-60°=60°,∵△BCE≌△ACD,∴∠CAD=∠CBE,那么,在△ANC和△BMC中,∠CAN=∠CBM,∠ACN=∠BCM,AC

在等边三角形ABC中AB=4,D是AB的中点,过D作射线DE、DF,使角EDF=60度,射线DF与AC边于F射线DE与B

易证△ADF与△DEF相似可得EF/FD=FD/AFFD^2=AE*AF由AF=4-X故FD^2=Y(4-X)在三角形AFD中用余弦定理:DF^2=AD^2+AF^2-2AD*AFcos∠A=4+(4

如图,在等边三角形abc 中,d是ac 边上的一点,连接bd ,将三角形bcd 绕点b逆时针旋转6

28再问:我要过程再答:错了错了啊,应该是19再问:哦再问:谢了!再答:bae由bcd得到,ae等于cd,ac=ad+cd就是ac=ad+ae然后bd=be角ebd为60度ebd为等边三角形,ed=b