如图 直线ac平行bf,c,e分别在AB,DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:25:26
思路点播:图二中△ABF≌△CDE和△DEG≌△BFG不变,可证得结论.证明:如图一∵AE=CF∴AF=CE又∵DE⊥AC,BF⊥AC,AB=CD∴△ABF≌△CDE∴BF=DE又∵∠AFB=∠DEC
P为AC的中点,P为EF的中点,P为BD的中点,选择P为BD的中点,理由如下:证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在R
这个很简单啊,是初2的题吧.第一题∵DE⊥ACAF⊥AC∴∠EDG=∠FBG∵∠AGB=∠CGDAB=CD∴△AGB全等△DGC∴AG=CG∵AE=CF∴EG=FG第2题∵AE=CF∴AF=CE∵BF
(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CDAF=CE∴Rt△ABF≌Rt△CDE
∵BE=CF∴BE+EC=CF+EC即BC=EF∵AB=DE,AC=DF∴△ABC≌△DEF(S.S.S)∵∠B=∠DEF,∠ACB=∠F∴AB∥DE,AC∥DF
∵∠CAE+∠ACE=90°,∠BCF+∠ACE=90°∴∠CAE=∠BCF同理,∠ACE=∠CBF∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF∴△ACE≌△CBF∴AE=CF,CE=BF∵C
∵AE=CF∴AF=CE又∵AB=CD∠BFA=∠CED=90°∴△ABF全等于△CDE∴DE=BF又∵∠BGF=∠DGE∠BFA=∠CED=90°∴△GBF全等于△GDE∴EG=GF即BD平分EF
1因为BF⊥ACDE⊥AC所以∠CED=∠BFA=90°∵AE=CF∴AF=CE在RT△ABF和RT△CED中AB=CDAF=CE所以△ABF≌△CED(HL)∴BG=GD在△ABG和△CGD中AB=
(1)证明:因为AE=CF,所以AF=CE,因为DE垂直于AC,BF垂直于AC,所以角AFB=角CED,BF//DE,因为AB//CD,所以角A=角C,所以三角形ABF全等于三角形CDE,所以BF=D
△ABF和△DEC.有2边相等,且是直角三角形,所以.2个三角形相似.所以另外一边也相等,也就是AF=CE其次因为相似,所以∠C=∠A所以AB//CD
全等.证明过程如下:∵ab∥de∴∠abc=∠def①又∵ac∥df∴∠acb=∠dfe②又∵bc=ef③∴△abc≌△def(asa)补充:是用①②③这三个条件证得全等
(1)相等因为de垂直ac,bf垂直ac所以角bfa=角dec=90度因为ae=cf所以ae+ef=cf+ef即af=ce在RT三角形abf,Rt三角形cde中ab=cdaf=ce所以rt三角形abf
∵AB∥DC.∴∠DCE=∠BAF.∵DE⊥AC,BF⊥AC.∴∠DEA=90°=∠BFC.∵AE=CF.∴AE+EF=CF+EF.即AF=CE.∴△CDE≌△ABF(ASA)∴DE=BF.
∵AB∥CD∴∠B=∠D∵BF=BE+EF,ED=EF+FD∴BE=FD在△ABE与△CFD中,∠B=∠D,BE=FD,∠A=∠C∴△ABE≌△CFD∴∠AEB=∠CFD∵∠AEB+∠AED=∠CFD
作AO⊥FB的延长线,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC/2∵AE=AC∴AO=AE/2∴∠AEO=30°∵BF∥AC∴∠CAE∠AEO=30°∵
2)∵AB=6,DE=4∴OD=OA=3OE=√(OD²+DE²)=5AE=OE-OA=2∵AH//OD∴AH/OD=AE/OEAH=AE*OD/OE=6/5∵∠ABC=∠C∴AC
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】
图中的第二问你的题中没有所以请无视.(第2问原题是:2.若将三角形DEC的边EC沿AC方向移动,变为图2,其余条件不变,上述结论是否成立?为什么?)——十方乄刃
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】