如图 直线ac平行bf,c,e分别在AB,DF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:25:26
如图 直线ac平行bf,c,e分别在AB,DF
1:如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试说明BD平分

思路点播:图二中△ABF≌△CDE和△DEG≌△BFG不变,可证得结论.证明:如图一∵AE=CF∴AF=CE又∵DE⊥AC,BF⊥AC,AB=CD∴△ABF≌△CDE∴BF=DE又∵∠AFB=∠DEC

已知,如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC于E,BF⊥AC于F,若AB=CD,连BD交

P为AC的中点,P为EF的中点,P为BD的中点,选择P为BD的中点,理由如下:证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在R

如图1,A,E,F,C在同一条直线上,AE=CF,过E,F分别做DE垂直于AC,BF垂直于AC,若AB=CD.试说明BD

这个很简单啊,是初2的题吧.第一题∵DE⊥ACAF⊥AC∴∠EDG=∠FBG∵∠AGB=∠CGDAB=CD∴△AGB全等△DGC∴AG=CG∵AE=CF∴EG=FG第2题∵AE=CF∴AF=CE∵BF

如图(1),A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分E

(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CDAF=CE∴Rt△ABF≌Rt△CDE

已知:如图,E,C是BF上两点,且BE=CF,AB=DE,AC=DF,求证:AB平行DE,AC平行DF

∵BE=CF∴BE+EC=CF+EC即BC=EF∵AB=DE,AC=DF∴△ABC≌△DEF(S.S.S)∵∠B=∠DEF,∠ACB=∠F∴AB∥DE,AC∥DF

如图,已知△ABC中,∠ACB=90°,AC=BC,直线PQ过C点,AE⊥PQ于E,BF⊥PQ于F.求证EF=AE+BF

∵∠CAE+∠ACE=90°,∠BCF+∠ACE=90°∴∠CAE=∠BCF同理,∠ACE=∠CBF∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF∴△ACE≌△CBF∴AE=CF,CE=BF∵C

如图,A,E,F,C四点在同一条直线上,AE=CF,过E,F分别作DE⊥AC于点E,BF⊥AC于点F,AB=CD,BD与

∵AE=CF∴AF=CE又∵AB=CD∠BFA=∠CED=90°∴△ABF全等于△CDE∴DE=BF又∵∠BGF=∠DGE∠BFA=∠CED=90°∴△GBF全等于△GDE∴EG=GF即BD平分EF

点A,E,F,C在同一条直线上,AE=CF,果E,F分别作DE⊥AC,BF⊥AC,且AB=CD.(1)如图①,

1因为BF⊥ACDE⊥AC所以∠CED=∠BFA=90°∵AE=CF∴AF=CE在RT△ABF和RT△CED中AB=CDAF=CE所以△ABF≌△CED(HL)∴BG=GD在△ABG和△CGD中AB=

如图,A.E.F.C在同一条直线上,AE=CF,过点E.F分别作DE⊥AC,BF⊥AC,若AB∥CD,可以得到BD平分E

(1)证明:因为AE=CF,所以AF=CE,因为DE垂直于AC,BF垂直于AC,所以角AFB=角CED,BF//DE,因为AB//CD,所以角A=角C,所以三角形ABF全等于三角形CDE,所以BF=D

如图,AB=CD,BE垂直AC,BF垂直AC,E,F是垂足,DE=BF证明AF=CE AB平行于CD

△ABF和△DEC.有2边相等,且是直角三角形,所以.2个三角形相似.所以另外一边也相等,也就是AF=CE其次因为相似,所以∠C=∠A所以AB//CD

如图,已知点b,f,c,e在同一条直线上,bc等于ef,ab平行de,ac平行df,三角形abc与三角形def是否全等

全等.证明过程如下:∵ab∥de∴∠abc=∠def①又∵ac∥df∴∠acb=∠dfe②又∵bc=ef③∴△abc≌△def(asa)补充:是用①②③这三个条件证得全等

如图K-13-15所示,点A.,E,F,C在一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,且AB=C

(1)相等因为de垂直ac,bf垂直ac所以角bfa=角dec=90度因为ae=cf所以ae+ef=cf+ef即af=ce在RT三角形abf,Rt三角形cde中ab=cdaf=ce所以rt三角形abf

如图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,AB平行DC,求证DE=BF

∵AB∥DC.∴∠DCE=∠BAF.∵DE⊥AC,BF⊥AC.∴∠DEA=90°=∠BFC.∵AE=CF.∴AE+EF=CF+EF.即AF=CE.∴△CDE≌△ABF(ASA)∴DE=BF.

如图 AB平行CD BF=DE 点B、E、F、D在一条直线上 ∠A=∠C.求证:AE平行CF.

∵AB∥CD∴∠B=∠D∵BF=BE+EF,ED=EF+FD∴BE=FD在△ABE与△CFD中,∠B=∠D,BE=FD,∠A=∠C∴△ABE≌△CFD∴∠AEB=∠CFD∵∠AEB+∠AED=∠CFD

如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF平行AE,求角BCF

作AO⊥FB的延长线,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC/2∵AE=AC∴AO=AE/2∴∠AEO=30°∵BF∥AC∴∠CAE∠AEO=30°∵

如图,AB为圆O直径,DF切圆O于D,BF⊥DF于F,过A作AC平行BF交BC延长线于C,FD与BA延长线交与E,交AC

2)∵AB=6,DE=4∴OD=OA=3OE=√(OD²+DE²)=5AE=OE-OA=2∵AH//OD∴AH/OD=AE/OEAH=AE*OD/OE=6/5∵∠ABC=∠C∴AC

如图,已知AB=CD,DE垂直AC于E,BF垂直AC于F,BF=DE,求证:AB平行CD.

证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】

如图,A E F C在同一直线 AE等于CF 过点 E,F 分别作E,F分别作DE垂直AC BF垂直AC 若AB等于CD

图中的第二问你的题中没有所以请无视.(第2问原题是:2.若将三角形DEC的边EC沿AC方向移动,变为图2,其余条件不变,上述结论是否成立?为什么?)——十方乄刃

已知:如图,AB=CD DE垂直AC BF垂直AC E、F是垂足 ,DE=BF.求证:AF=CE 且AB平行CD.

证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】